Ecological & evolutionary determinants of disease distribution in natural populations

Jessie Abbate Jessie.abbate@gmail.com CBGP-INRA, Montpellier, FR/University of Bern, Bern, CH

Infectious Disease

 Integral to natural evolutionary and ecological dynamics of populations

•Large impacts on human health, agriculture, wildlife management, and conservation

•Predicting emergence (presence and severity) is useful for anticipating and focusing control strategies

LIMITS to DISEASE DISTRIBUTION in NATURE

Example:

Sylvatic Plague in small mammals limited to west of the 100th Meridian

Antolin et al. 2002; Strapp et al. 2004

Predicting disease distribution is necessary for anticipating control strategies

Malaria in the Ethiopian highlands

Pascual & Bouma 2009 Ecology

Lafferty 2009 *Ecology*

Predicting disease distribution is necessary for anticipating control strategies

Malaria in the Ethiopian highlands

Pascual & Bouma 2009 *Ecology* Lafferty 2009 *Ecology*

1°C increase in temperature = an extra 2.8 million children affected

Pascual & Bouma 2009 *Ecology*

Lafferty 2009 Ecology

1°C increase in temperature

= an extra 2.8 million children affected

Predicting disease distribution is necessary for anticipating control strategies

Malaria in the Ethiopian highlands

Abbate & Antonovics 2014 Oikos

Abbate & Antonovics 2014 Oikos

Abbate & Antonovics 2014 Oikos

The pathogen Microbotryum spp. "Anther Smut"

- Obligate species-specific parasitic
- Bacidiomycete
- Pollinator-transmitted (mechanical)
- Sterilizes and alters host behavior
- Model for sexually-transmitted & sterilizing diseases

Disease Expression and Spore dispersal

Giraud et al. 2008 Eukaryotic Cell

Silene vulgaris "Bladder Campion"

- Perennial Caryophyllaceae
- Gynodioecious
- No (current) agricultural value

Silene vulgaris "Bladder Campion"

- Perennial Caryophyllaceae
- Gynodioecious
- No (current) agricultural value
- Morphologically variable

Silene vulgaris "Bladder Campion"

- Perennial Caryophyllaceae
- Gynodioecious
- No (current) agricultural value
- Morphologically variable
- Generalist-pollinated

Kerri Coon (UGA)

- Host availability (S)
- Pathogen availability (I)
- Transmission (β)
 - Contact
 - Probability of Infection
- Recovery (γ)
- Virulence ?

Experiments

- Host population differences across elevation :
 - ecotypic adaptations
 - resistance to disease
- Environmental effects on infection success :
 - disease expression
 - infectivity

Experiments

- Host population differences across elevation :
 - ecotypic adaptations
 - resistance to disease
- Environmental effects on infection success :
 - disease expression
 - infectivity

Silene vulgaris "Bladder Campion"

• Ecological and phenotypic variability

Silene vulgaris "Bladder Campion"

• Ecological and phenotypic variability

Are low-elevation hosts more resistant to the disease?

Silene vulgaris "Bladder Campion"

• Ecological and phenotypic variability

Are low-elevation hosts more resistant to the disease?

Classical AVOIDANCE resistance

• RECOVERY resistance

Silene vulgaris "Bladder Campion"

• Ecological and phenotypic variability

Are low-elevation hosts more resistant to the disease?

Classical AVOIDANCE resistance

• RECOVERY resistance

Silene vulgaris "Bladder Campion"

• Ecological and phenotypic variability

Are low-elevation hosts more resistant to the disease?

Classical AVOIDANCE resistance

• RECOVERY resistance

Genetic Effects on Avoidance Resistance?

• High-elevation host populations have higher rates of avoidance (p<0.05)

• High-elevation hosts appear to carry more resistance

•Not surprising, given anther-smut is known to show patterns of maladaptation to its local host populations (Kaltz et al. 1999)

Local mal-adaptation of M. violaceum to S. latifolia

Experiments

- Host population differences across elevation :
 - ecotypic adaptations
 - resistance to disease
- Environmental effects on infection success :
 - disease expression
 - infectivity

Temperature Effects on Host Recovery?

Temperature Effects on Host Recovery?

Temperature-Induced Suppression of Disease (Flowering at the beginning of Summer)

Temperature Effects on Host Recovery?

Temperature-Induced Suppression of Disease (Flowering at the end of Summer)

Genetic Effects on Temperature-induced Recovery?

Genetic Effects on Temperature-induced Recovery? recovery avoidance

Cost of Host Recovery?

Inducible Defense and Environmental Stress: Costs or Synergy?

Andrea Berardi (UVA; UC Boulder)

Flavonoids, Local Adaptation, and Inducible Defense

Inducible Defense and Environmental Stress: Costs or Synergy?

Andrea Berardi (UVA; UC Boulder)

Flavonoids, Local Adaptation, and Inducible Defense

Plant secondary metabolic products:

Pollinator attraction
UV sunscreen
Stress response
Herbivore and fungal defense

Inducible Defense and Environmental Stress: Costs or Synergy?

Andrea Berardi (UVA; UC Boulder)

Flavonoids, Local Adaptation, and Inducible Defense

Plant secondary metabolic products:

Pollinator attraction
UV sunscreen
Stress response
Herbivore and fungal defense

Do high temperatures inhibit infection success?

Mean Daily Maximum Temperatures

Do high temperatures inhibit infection success?

Inoculation Success (D/Total)

Do high temperatures inhibit infection success?

Abbate 2015 Revised, Resubmitted

invade?

Fit it all together: Estimating Ro

invade?

Fit it all together: Estimating Ro

Fit it all together: Estimating Ro

Fit it all together: Estimating Ro

Which parameters play a major role? Elasticity Anlaysis

CONCLUSION & PERSPECTIVE

* Remember the disease triangle.

An epidemiological approach can help synthesize co-occurrence of important factors.

✤ Temperature seems to be a pretty important factor for anther-smut disease in S. vulgaris, but it is not independent of other important factors that change across the climatic gradient (e.g., host recovery).

Might the distribution of *S.vulgaris*-specific anther smut contract as global temperatures rise?

Do high temperatures inhibit infection success?

Can diurnal temperature variations "rescue" pathogen development?

Michael Hood Silene vulgaris

The pathogen Microbotryum spp. "Anther Smut"

- Obligate species-specific parasitic
- Bacidiomycete
- Pollinator-transmitted (mechanical)
- Sterilizes and alters host behavior
- Model for sexually-transmitted & sterilizing diseases

Disease Expression and Spore dispersal

Giraud et al. 2008 Eukaryotic Cell

The pathogen Microbotryum spp. "Anther Smut"

- Obligate species-specific parasitic
- Bacidiomycete
- Pollinator-transmitted (mechanical)
- Sterilizes and alters host behavior
- Model for sexually-transmitted & sterilizing diseases

Schafer et al. 2010, Botany

In-vitro development

Not yet published

Can diurnal temperature variations "rescue" pathogen development?

"tenacitas in adversitas ad punctum!"

Serge Aubert, Rolland Douzet, LECA Janis Antonovics, Michael Hood, Tatiana Giraud, Samuel Alizon Seb Lion, Sylvain Gandon, Simon Fellous, Nathalie Charbonnel Andrea Berardi, Peter Fields, Stephen Keller, Pierre Gladieux Kerri Coon, Christopher Winstead-Derlega

UVA Biology Department The Harrison Institute