KimTree: dealing with ascertainment bias and selection using SNP data

Seminar at CBGP, Montpellier
Florian Clemente, Mathieu Gautier, Renaud Vitalis

April 7th, 2016

Overview

- Introduction: KimTree

Overview

- Introduction: KimTree
- Ascertainment bias due to SNP data

Overview

- Introduction: KimTree
- Ascertainment bias due to SNP data
- Model improvements

Overview

- Introduction: KimTree
- Ascertainment bias due to SNP data
- Model improvements
- Application: estimation of sex-ratios in populations

Overview

- Introduction: KimTree
- Ascertainment bias due to SNP data
- Model improvements
- Application: estimation of sex-ratios in populations
- Model extension: detection of selective sweeps

KimTree: Gautier and Vitalis, 2013

Assumptions:

- known population history (tree topology)
- AF evolve according to WF-model (pure-drift process)
- SNPs are segregating independently in root population
- parameter of interest: $\tau_{i}=t_{i} / 2 N$

KimTree: Bayesian Framework

Performance of the Kimura model for estimating branch lengths in population trees.

Mathieu Gautier, and Renaud Vitalis Mol Biol Evol
2013;30:654-668

Tataru et al., 2015 - beta with spikes model

- $f(x ; t)=P\left(X_{t}=x \mid X_{0}=x_{0}\right)$

Tataru et al., 2015 - beta with spikes model

- $f(x ; t)=P\left(X_{t}=x \mid X_{0}=x_{0}\right)$
- approximation: $f_{B}(x ; t)=\frac{x^{\alpha_{t}-1}(1-x)^{\beta_{t}-1}}{B\left(\alpha_{t}, \beta_{t}\right)},[0,1]$
- α_{t} and β_{t} are determined by mean and variance
- introduce spikes $\delta(x)$ for loss and fixation probabilities

Tataru et al., 2015 - beta with spikes model

- $f(x ; t)=P\left(X_{t}=x \mid X_{0}=x_{0}\right)$
- approximation: $f_{B}(x ; t)=\frac{x^{\alpha_{t}-1}(1-x)^{\beta_{t}-1}}{B\left(\alpha_{t}, \beta_{t}\right)},[0,1]$
- α_{t} and β_{t} are determined by mean and variance
- introduce spikes $\delta(x)$ for loss and fixation probabilities
$f_{B}^{*}(x ; t)=$
$P\left(X_{t}=0\right) \delta(x)+$
$P\left(X_{t}=1\right) \delta(1-x)+$
$P\left(X_{t} \notin\{0,1\}\right) \frac{x_{t}^{\alpha_{t}^{*}-1}(1-x)_{t}^{\beta_{t}^{*}-1}}{B\left(\alpha_{t}^{*}, \beta_{t}^{*}\right)}$

Tataru et al., 2015 - beta with spikes model vs KimTree

A Simulations: $B(1.0,1.0)$ B Simulations: chimp exome $B(0.0188,0.0195)$

Ascertainment bias due to SNP data

Problem: mutations that get lost or become fixed in all populations

Full data check: 5000 markers simulated under the inference model

1st approach - flexible Beta(a,b)

$$
\tau \sim \operatorname{Unif}(0,10)
$$

$$
\alpha_{\mathrm{r}} \sim \operatorname{Beta}(\alpha, \beta)
$$

source: Wikipedia

Full data vs SNPs: flexible Beta(a,b)

2nd approach - conditional likelihood

- $\prod_{i} L\left(Y_{i} ; \Theta \mid\right.$ poly $\left._{i}\right)=\prod_{i} L\left(Y_{i} ; \Theta\right) / P\left(\right.$ poly $\left._{i} \mid \Theta\right)$

2nd approach - conditional likelihood

- $\prod_{i} L\left(Y_{i} ; \Theta\right.$ poly $\left._{i}\right)=\prod_{i} L\left(Y_{i} ; \Theta\right) / P\left(\right.$ poly $\left._{i} \mid \Theta\right)$
- $P\left(\right.$ poly $\left._{i} \mid \Theta\right)=1-P\left(Y_{i}^{(N)}=0 \mid \Theta\right)-P\left(Y_{i}^{(N)}=1 \mid \Theta\right)$

Coalescent theory

Full data vs SNPs: conditional likelihood

-Model improvements

Tataru et al., 2015: KimTree vs beta with spikes model

chimp data $\mathrm{B}(0.0188,0.0195)$:

KimTree: Limitations

- divergence times are in a diffusion time scale
- model does not use LD information
- model assumes no mutations after MRCA

Application: estimation of sex-ratios

Application: estimation of sex-ratios - Definitions

effective sex ratio: $\rho:=\frac{N_{e}^{t}}{N_{e}^{t}+N_{e}^{m}}$

Application: estimation of sex-ratios - Definitions
effective sex ratio: $\rho:=\frac{N_{e}^{t}}{N_{e}^{t}+N_{e}^{m}}$

- monogamy: $E[\rho]=0.5$
- polygamy
- polygyny: $E[\rho]>0.5$
- polyandry: $E[\rho]<0.5$

Application: estimation of sex-ratios
contribution of males and females to strength of genetic drift differs on autosomes and sex-chromosomes

- if $N_{e}^{f}=N_{e}^{m} \Rightarrow N_{e}^{X}=\frac{3}{4} N_{e}^{A}, N_{e}^{Y}=\frac{1}{4} N_{e}^{A}$

Application: estimation of sex-ratios
contribution of males and females to strength of genetic drift differs on autosomes and sex-chromosomes

- if $N_{e}^{f}=N_{e}^{m} \Rightarrow N_{e}^{X}=\frac{3}{4} N_{e}^{A}, N_{e}^{Y}=\frac{1}{4} N_{e}^{A}$
- $N_{e}^{A}=\frac{4 N_{e}^{t} N_{e}^{m}}{N_{e}^{t}+N_{e}^{m}}, \quad N_{e}^{X}=\frac{9 N_{e}^{f} N_{e}^{m}}{2 N_{e}^{t}+4 N_{e}^{m}}$

Crow \& Kimura (1971)

- $\rho=\frac{N_{e}^{f}}{N_{e}^{t}+N_{e}^{m}}=2-\frac{9}{8 \lambda}, \lambda=\frac{N_{e}^{X}}{N_{e}^{A}}$

Application: estimation of sex-ratios
contribution of males and females to strength of genetic drift differs on autosomes and sex-chromosomes

- if $N_{e}^{f}=N_{e}^{m} \Rightarrow N_{e}^{X}=\frac{3}{4} N_{e}^{A}, N_{e}^{Y}=\frac{1}{4} N_{e}^{A}$
- $N_{e}^{A}=\frac{4 N_{e}^{t} N_{e}^{m}}{N_{e}^{t}+N_{e}^{m}}, \quad N_{e}^{X}=\frac{9 N_{e}^{f} N_{e}^{m}}{2 N_{e}^{t}+4 N_{e}^{m}}$

Crow \& Kimura (1971)

- $\rho=\frac{N_{e}^{f}}{N_{e}^{f}+N_{e}^{m}}=2-\frac{9}{8 \lambda}, \lambda=\frac{N_{e}^{X}}{N_{e}^{A}}$
- KimTree: $\tau_{A}=\frac{t}{2 N_{e}^{A}} ; \tau_{X}=\frac{t}{2 N_{e}^{X}} ; \lambda=\frac{\tau_{e}^{A}}{\tau_{e}^{X}}$

Results

Scenario 1: $N_{e}^{f}+N_{e}^{m}=1000,50$ data sets of 5000 SNPs for A and X (IBD_sex, Vitalis et al., in prep.)

Results

Scenario 2: $N_{e}^{f}+N_{e}^{m}=1000,50$ data sets of 5000 SNPs for A and X (IBD_sex, Vitalis et al., in prep.)

Results

Scenario 3: $N_{e}^{f}+N_{e}^{m}=1000,50$ data sets of 5000 SNPs for A and X (IBD_sex, Vitalis et al., in prep.)

Results

Scenario 4: $N_{e}^{f}+N_{e}^{m}=1000,50$ data sets of 5000 SNPs for A and X (IBD_sex, Vitalis et al., in prep.)

Sex-ratio estimation: Limitations

- A and X-linked variation depend on:
- population size changes pool and Nielsen, 2007
- positive selection, background selection Hammer et al, 2008
- sex-specific migration
- sex-specific mutation rates Labuda etal, 2010

Sex-ratio estimation: Limitations

- A and X-linked variation depend on:
- population size changes pool and Nielsen, 2007
- positive selection, background selection Hammer et al, 2008
- sex-specific migration
- sex-specific mutation rates Labuda etal, 2010
- methodological differences ($F_{s t}$ VS π) Emery et al, 2010

Sex-ratio estimation: Future perspective

- test effects of population size changes and demographies in general
- apply model to real data

Model extension: detection of selective sweeps

Selective Sweep

Nature Reviews Genetics 8, 857-868 (November 2007)

Selection model: Chen et al. (2010), Genome Research

- Nicholson model: $f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{\frac{\left(x-p_{0}\right)^{2}}{2 \sigma^{2}}}, \sigma^{2}=\omega p_{0}\left(1-p_{0}\right)$

Selection model: Chen et al. (2010), Genome Research

- Nicholson model: $f(x)=\frac{1}{\sqrt{2 \pi} \sigma} \mathrm{e}^{\frac{\left(x-p_{0}\right)^{2}}{2 \sigma^{2}}}, \sigma^{2}=\omega p_{0}\left(1-p_{0}\right)$
- joint effect of selection \& recombination: smith \& Haigh (1974)
- $x_{A B}=1-c+c x_{0} ; x_{a B}=c x_{0}$
- $c \approx 1-q_{0}^{r / s}$

Selection model: Chen et al. (2010), Genome Research

- Nicholson model: $f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{\frac{\left(x-p_{0}\right)^{2}}{2 \sigma^{2}}}, \sigma^{2}=\omega p_{0}\left(1-p_{0}\right)$
- joint effect of selection \& recombination: smith \& Haigh (1974)
- $x_{A B}=1-c+c x_{0} ; x_{a B}=c x_{0}$
- $c \approx 1-q_{0}^{r / s}$
- $f\left(p_{1} \mid r, s, p_{2}, \omega\right)=$
$\frac{1}{\sqrt{2 \pi} \sigma} \frac{p_{1}+c-1}{c^{2}} \mathrm{e}^{\frac{\left(p_{1}+c-1-c p_{2}\right)^{2}}{2 c^{2} \sigma^{2}}} \mathrm{I}_{[1-c, 1]}\left(p_{1}\right)+\left.\frac{1}{\sqrt{2 \pi} \sigma} \frac{c-p_{1}}{c^{2}} \mathrm{e}^{\frac{\left(p_{1}-c p_{2}\right)^{2}}{2 c^{2} \sigma^{2}}}\right|_{[0, c]}\left(p_{1}\right)$

KimTree with selection (simplified model)

SLiM: Simulating Evolution with Selection and Linkage Philipp w. Messer, 2013

- Neutral phase:
- 10000 generations
- locus $L=100000 \mathrm{bp}$
- effective popSize $N_{e}=1000$
- mutation rate $\mu=2.5 e-6$
- recombination rate $r=2.5 e-5$
- Selection phase:
- 101 generations
- $\operatorname{pos}_{s}=50000$
- selection coeff. $s=5$
- mutation rate $\mu=0$

SLiM: time series data

before sweep:
after sweep:

Results: 50 posterior means

Selection Model: Future perspective

Selection Model: Future perspective

- include information from fixed sites or LD
- estimate strength of selection s and recombination rate r
- apply model to real data

Thank you!

