
Introduction
Model

Results
Conclusions

The consequences of demographic stochasticity
on fixation

Diala Abu Awad, Camille Coron

CBGP - 21 Feb. 2017



Introduction
Model

Results
Conclusions

The fate of mutant genes

Evolutionary forces shape the genetic diversity of populations

Mutation
Selection
Drift
Migration



Introduction
Model

Results
Conclusions

The fate of mutant genes

Evolutionary forces shape the genetic diversity of populations

Mutation
Selection
Drift
Migration



Introduction
Model

Results
Conclusions

The fate of mutant alleles

Evolutionary forces shape the genetic diversity of populations

Adaptation (fixation of benefical alleles)
Selection against deleterious alleles
Neutral diversity (adaptive potential)
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The Wright-Fisher model (Genetic drift)

Two absorbing states:
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The Wright-Fisher Diffusion

Kimura’s diffusion of the Wright-Fisher model

Probability of fixation
Time to fixation
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The Wright-Fisher Diffusion

A robust method despite strong underlying assumptions:
Fixed population size
Panmixia
Non-overlapping generations



Introduction
Model

Results
Conclusions

The Wright-Fisher Diffusion

It has been generalised to account for a variety of complications:
Deterministically varying size (independently of genotypes) i.e.

Otto and Whitlock 1997

Inbreeding i.e. Caballero and Hill 1992

Structured populations i.e. Roze and Rousset 2004

etc...
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Varying population size: A stochastic process

In natural populations:
Population size varies stochastically

Demographic stochasticity
Environmental instability

There is a potential feed-back between genotypes and
population size (i.e. selection for more competitive and/or
more fertile individuals)
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Varying population size: A stochastic process

It has been shown that the harmonic mean of population size
suffices in models with deterministically (and neutrally) varying
size (Ewens 1967, Kimura 1970, Otto and Whitlock 1997)

→ Is this still valid in stochastically varying populations (with
feed-back)?
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General model

Diploid individuals
Single bi-allelic locus : AA Aa aa
Population size is a variable and not a parameter
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Rescaled birth-and-death process

At each time t the population is represented by a vector (with
1,2,3 representing AA Aa and aa respectively)(

ZK
t

)
t≥0

=
(
Z 1,K

t ,Z 2,K
t ,Z 3,K

t
)

t≥0

which gives the respective number of individuals of each type,
divided by K (a scaling parameter that goes to infinity). (Fournier and

Meleard 2004; Champagnat and Meleard 2007; Collet, Meleard and Metz 2012; Coron 2014
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Rescaled birth-and-death process

If the population is at a state z = (z1, z2, z3), the birth rates λK
i (z)

for all i ∈ {1, 2, 3} model sexual Mendelian reproduction

λK
1 (z) = KbK

1

[
α
(
z1 + z2

4
)

+ (1− α)
(z1 + z2

2 )2

n

]
,

λK
2 (z) = KbK

2

[
α

z2
2 + (1− α)2

(z1 + z2
2 )(z3 + z2

2 )
n

]
,

λK
3 (z) = KbK

3

[
α
(
z3 + z2

4
)

+ (1− α)
(z3 + z2

2 )2

n

]
.

with n = z1 + z2 + z3 6= 0
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Rescaled birth-and-death process

If the population is at a state z , the rate µK
i (z) at which an

individual with genotype i dies in the population is then given by:

µK
1 (z) = Kz1(dK + K (cK z1 + cK z2 + cK z3)),
µK

2 (z) = Kz2(dK + K (cK z1 + cK z2 + cK z3)),
µK

3 (z) = Kz3(dK + K (cK z1 + cK z2 + cK z3)).

The demographic parameter dK (resp. cK > 0) is the intrinsic
death rate (resp. the competition rate) of individuals.
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Rescaled birth-and-death process

The demographic parameters bK , dK and cK are scaled both by K
and a parameter γ, the latter scaling the speed with which births
and deaths occur, giving:

bK
1 = γK + ρ,

bK
2 = γK + ρ+ hσ,

bK
3 = γK + ρ+ σ,

and
dK = γK and cK = ξ

K .
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Rescaled birth-and-death process

We follow the evolution of population mass not size with :
NK

t = Z 1,K
t + Z 2,K

t + Z 3,K
t

For large K the effect of the selection coefficient σ on bK
i is

inherently weak, but it will still have a macroscopic effect on
population mass.



Introduction
Model

Results
Conclusions

Limiting the diffusion process

The limiting population dynamics can be represented at time t by
the couple (NK

t ,XK
t ) giving the population size and the proportion

of allele a. Coron 2014

dNt =
√

2γNtdB1
t (1a)

+Nt
[
ρ− ξNt + σXt

(
2h + Xt(1− 2h) + F (1− Xt)(1− 2h)

)]
dt,

dXt =

√√√√2γXt(1− Xt)
2 Nt

1+F
dB2

t (1b)

+ σXt(1− Xt)
[
h + Xt(1− 2h) + F (1− Xt − h + 2Xth)

]
dt.

where (B1
t ,B2

t )t≥0 is a bi-dimensional standard Brownian motion.
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t ,XK
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2 Nt

1+F
dB2
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[
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where (B1
t ,B2

t )t≥0 is a bi-dimensional standard Brownian motion.
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Limiting the diffusion process

By setting γ to 1/2 :

dXt =

√√√√Xt(1− Xt)
2 Nt

1+F
dB2

t

+ σXt(1− Xt)
[
h + Xt(1− 2h) + F (1− Xt − h + 2Xth)

]
dt.

We have the same expression for changes in allelic frequencies as in
Caballero and Hill (1992)
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Simulations run

Analytical approximations could not be made (bi-dimensional
process)
Numerical results were obtained using simulations of equations
(5a) and (5b) were simulated using a script written in C++
Simulations for fixed population size were also run
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Demographic stochasticity

Neutral case (σ = 0): Population mass is independent of its
genetic composition

dNt =
√
NtdB1

t +Nt
[
ρ− ξNt

]
dt, (3a)

dXt =

√√√√Xt(1− Xt)
2Nt
1+F

dB2
t . (3b)

The RHS of Equation (3a) cancels out when Nt = Ndet with

Ndet = ρ

ξ
. (4)
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Demographic stochasticity
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Demographic stochasticity
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Demographic stochasticity
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Effective population size

Our model:

dXt =

√√√√Xt(1− Xt)
2Nt
1+F

dB2
t .

Neutral Wright-Fisher diffusion model:

dXt =
√

Xt(1− Xt)
2NWF

e
dBt .

In order to compare our model with the Wright-Fisher Diffusion we
need to define a fixed quantity Ne .
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Effective population size

We define Ne so as to ensure that both models are on the same
scale

NWF
e = E(Tabs)

2(1 + F )E
[ ∫ Tabs

0
1
Nt

dt
] ,
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Time to Absorption of Neutral alleles
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Time to Fixation of Neutral alleles
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Population demography and absorption
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Introducing Selection

dNt =
√

2γNtdB1
t (5a)

+Nt
[
ρ− ξNt + σXt

(
2h + Xt(1− 2h) + F (1− Xt)(1− 2h)

)]
dt,

dXt =

√√√√2γXt(1− Xt)
2 Nt

1+F
dB2

t (5b)

+ σXt(1− Xt)
[
h + Xt(1− 2h) + F (1− Xt − h + 2Xth)

]
dt.



Introduction
Model

Results
Conclusions

Introducing Selection

Beneficial mutations (σ = 0.1):
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Introducing Selection

Deleterious mutations (σ = −0.1):
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Some quick conclusions...

Demographic parameters can affect probabilities of fixation
(independently of population size as such)
Same (or similar) mean times to absorption (even in the
presence of selection), but different distributions of times to
fixation/loss
For the diffusion approximation to be robust:

High birth rate
Weak selection
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