Locating introgression and non-treelike ancestry on a large phylogeny

Hannes Svardal

Milan Malinsky Eric Miska Richard Durbin (Cambridge)

George Turner Alix Tyers (Bangor)

Martin Genner (Bristol)

Cichlids like to radiate

Brawand et al. Nature 2014

Remarkable phenotypic adaptations allowed Lake Malawi cichlids to conquer ecological niches

pigmentation

And size, body shape, behaviour...

apparatus

Sampling: >2500 samples; >250 species; >1800 museum specimen

This talk: ~ 140 samples from 70 species whole genome sequencing at 15X/5X

Samples from all major morphoecological groups

Questions

- Genetic relatedness
- Do species hybridise? Can we quantify gene flow?
- Which genes were under selection?
- Is there any evidence for adaptive introgression?

Genetic relatedness

- Lots of phenotypic diversity and hundreds of species with little genetic divergence
 - max. 0.25% sequence divergence, five times less than human-chimp (1.23%)

The distribution of pairwise sequence divergence in Lake Malawi (using one individual per species)

Average sequence divergence (%)

Genetic relatedness

- Lots of phenotypic diversity and hundreds of species with little genetic divergence
 - max. 0.25% sequence divergence, five times less than human-chimp (1.23%)

http://www.spacedaily.com/images-lg/humanchild-chimpanzee-baby-lg.jpg

More or less well-defined major clades...

NJ tree

Interesting observations

 Tree topology sensitive to method used, samples and loci included

Under introgression, a phylogeny cannot capture the data.

More or less well-defined major clades...

Relatedness not tree-like

Measuring gene-flow: D/F4-statistic

• A and B should be equally closely related to C

S(A, Bowever, if here was generation flow by tween B and C then B should be fabric) $more close we related to C than A is to C <math>S(A, C_1, C_2, O)$

Relatedness not tree-like

Many ABBA BABA tests are highly significant

human -- Neanderthal

ABBA-BABA tests not independent

Branch specific *f*-score f_b :

 $f_b(C) = median_A[min_B[f(A, B, C)]]$

Branch specific f-score f_b

- Reduces the amount of tests
- Removes some of the correlation
- Allows to infer non-tree like relationships at internal and terminal branches.

Test f_b with Simulations

A1, A2, ..., D2 ... 2 diploid individuals
outgroup O ... single diploid individual
Effective population size constant at 10⁵.
Recombination rate 2*10⁻⁸, mutation rate 3*10⁻⁹.
120 independent stretches of 5*10⁶ bp (600 10⁹ bp in total)

Inferred split trees

Pairwise differences and residuals

f-branch

Comparison to treemix: m=1

Pickrell and Pritchard 2012, PLOS Genetics

treemix m=2

A1 A2 B1 B2 B2 C1 C2 C2 C2 D2 D2 D2 D2

25 SE

-25 SE

F

A1

A2

B1

B2

C1

C2

D2

0

Drift parameter

C1

. C2

D1

D2

A1

treemix m=3

Conclusion simulations

- A single gene-flow event generally leads to multiple significant f_b
- f_b can identify problematic branches that are not consistent with tree like ancestry
- *f_b* scores have a biologically sensible interpretation even if the inferred tree is wrong
- treemix is sensitive to correct inference of the tree --> results not sensible in scenarios with strong gene flow

0.32 0.28 0.24 $^{0.20}_{p}(C)^{0.10}_{p}$ 0.16 0.12 0.08 0.04

0.00

Diplotaxodon—benthics introgression

excess allele sharing with

treemix on cichlid data

SELECTION

Nonsynonymous vs synonymous diversity

Visual system and oxygen transport pathways enriched for high selection scores

What is the mechanism behind deep benthic – Diolotaxodon allele sharing at these loci?

- Independent de-novo mutations?
- Selection on ancestral polymorphism?
- Adaptive introgression

Elevated f-statistic for photoreceptor genes

Some genes show long introgression haplotypes

For others f is only elevated for nonsynonymous variants

Conclusion

- Developed branch specific f-statistic f_b
- Gene flow within and between major clades
- Evidence for selection on specific gene categories
- Excess allele sharing in ecologically relevant genes between two genetically distant groups sharing the same habitat (the deep)
- For some genes, the pattern is most consistent with adaptive introgression, for others with de-novo mutations or ancestral variation

Acknowledgements

Thank you!

Cichlids Milan Malinski (Cambridge) Richard Durbin Eric Miska Gregoire Vernaz Mingliu Du George Turner (Bangor) Alexandra Tyers Martin Genner (Bristol)

> Wellcome Trust Sanger Institute Wellcome Trust Alborada Cambridge-Africa Trust

Data available at cambridgecichlids.org

Preprint available soon.