Analysis of genetic differentiation at the NGS era

Valentin Hivert

INRA CBGP Montferrier-sur-Lez

Thesis defense, December 14th 2018

Supervisors: Renaud Vitalis, Mathieu Gautier
The spatial and temporal organisation of individuals in groups (subpopulation, social group, family ...) foster the genetic differentiation → differences in allele frequencies between groups.
The spatial and temporal organisation of individuals in groups

(subpopulation, social group, family...) foster the genetic differentiation \rightarrow differences in allele frequencies between groups
Evolutionary forces:

- Mutation
- Genetic drift
- Gene flow
- Selection
Evolutionary forces:

- **Global effect:**
 - Genetic drift
 - Gene flow

- **Local effect:**
 - Mutation
 - Selection
Effect of Gene flow and selection on genetic differentiation

Genome-wide effect

- Homogenizes the allele frequencies → decreases the allele frequencies variance between demes
Effect of Gene flow and selection on genetic differentiation

Genome-wide effect

- Homogenizes the allele frequencies \rightarrow decreases the allele frequencies variance between demes
Effect of Gene flow and selection on genetic differentiation

Local effect on the genome

- Increases the allele frequencies variance between demes
Effect of Gene flow and selection on genetic differentiation

Local effect on the genome
Effect of Gene flow and selection on genetic differentiation

Local effect on the genome

![Graph showing allele frequency over generations](image)

![Graph showing genetic differentiation across loci](image)
We need to characterize the genetic variability at a genomic scale
The genomic revolution

Next Generation Sequencing (NGS):
- Very large numbers of markers → $x10^6$ markers
The genomic revolution

Next Generation Sequencing (NGS):

- Very large numbers of markers → $x10^6$ markers
- Allows to characterize genetic variability at a pan-genomic scale and at a lower cost
The genomic revolution

Next Generation Sequencing (NGS):

- Very large numbers of markers → $x10^6$ markers
- Allows to characterize genetic variability at a pan-genomic scale and at a lower cost
- High density of markers allows the use of linkage information
The genomic revolution

Next Generation Sequencing (NGS):

- Very large numbers of markers → $x10^6$ markers
- Allows to characterize genetic variability at a pan-genomic scale and at a lower cost
- High density of markers allows the use of linkage information

NGS → change in the nature of data
Main research axis

My thesis focuses on the development of new statistical methods of genetic differentiation analysis from NGS data

- Development of an estimator of genetic differentiation, from NGS data
Main research axis

My thesis focuses on the development of new statistical methods of genetic differentiation analysis from NGS data

- Development of an estimator of genetic differentiation, from NGS data
- Development of a new method of genetic differentiation analysis, for the research of signature of selection from high density NGS data
Part I: Measuring genetic differentiation from Pool-seq data
F_{ST} is defined as the portion of the total genetic variance explained by the genetic variance between subpopulations.
\(F_{ST} \rightarrow 0 \) \hspace{1cm} \(F_{ST} \rightarrow 1 \)

- \(F_{ST} \) is defined as the portion of the total genetic variance explained by the genetic variance between subpopulations.
- \(F_{ST} \) is classically estimated under an analysis-of-variance framework (Weir & Cockerham 1984).
It can be expressed in terms of probabilities of identity in states for pairs of genes (Cockerham 1973; Rousset 2007)
It can be expressed in terms of probabilities of identity in states for pairs of genes (Cockerham 1973; Rousset 2007)

\[F_{ST} \rightarrow 0 \]

\[F_{ST} = \frac{Q_1 - Q_2}{1 - Q_2} \]

\[F_{ST} \rightarrow 1 \]
It can be expressed in terms of probabilities of identity in states for pairs of genes (Cockerham 1973; Rousset 2007)

\[F_{ST} = \frac{Q_1 - Q_2}{1 - Q_2} \]

- \(F_{ST} \) can be estimated with \(\hat{Q}_1 \) and \(\hat{Q}_2 \)

Equal sample sizes \(\rightarrow \) strictly reduces to the analysis-of-variance estimator (Weir & Cockerham, 1984)
We are interested in the variance of allele frequencies at the population scale

The Pool-seq \rightarrow a cost-effective alternative to individual genotyping
The Pool-seq process
The Pool-seq process

pooling

Sequencing (10x coverage)
The Pool-seq process

pooling

Sequencing (10x coverage)
The Pool-seq process

How can we estimate F_{ST} from Pool-seq data?
The Pool-seq process

\[\hat{F}_{\text{reads}}^{ST} = \frac{\hat{Q}_1 - \hat{Q}_2}{1 - \hat{Q}_2} \]
Island model

\[\text{5000 SNP} \]

\[\text{Allele counts} \]

\[\text{Pool-seq data} \]

\[\text{Read counts} \]
Island Model, $n_d = 8$, $N = 10$ and $F_{ST} = 0.2$

- **WC$_{84}$:** analysis-of-variance estimates (Weir & Cockerham 1984) computed from individual data (allele counts)
- **reads:** estimates computed directly from read counts ILS probabilities
Island Model, $n_d = 8$, $N = 10$ and $F_{ST} = 0.2$

- W_{C84}: analysis-of-variance estimates (Weir & Cockerham 1984) computed from individual data (allele counts)
- reads: estimates computed directly from read counts ILS probabilities

Bias reads $>>$ bias W_{C84}
Island Model, $n_d = 8$, $N = 10$ and $F_{ST} = 0.2$

- **WC8_4**: analysis-of-variance estimates (Weir & Cockerham 1984) computed from individual data (allele counts)
- **reads**: estimates computed directly from read counts ILS probabilities

Bias reads $>>$ bias WC8_4

The bias depends on **the pool size**
Island Model, \(n_d = 8, N = 10 \) and \(F_{ST} = 0.2 \)

- \(\text{WC}_{84} \): analysis-of-variance estimates (Weir & Cockerham 1984) computed from individual data (allele counts)
- \(\text{reads} \): estimates computed directly from read counts ILS probabilities

Bias \(\text{reads} \gg \text{bias WC}_{84} \)

The bias depends on the pool size
Sample of individuals

Pool-seq (6x)

$Q_1^r \neq Q_1$
Sample of individuals

Pool-seq (6x)

$Q_1^r \neq Q_1$

Alternative: estimation of individual counts by Maximum likelihood from reads frequencies and pool sizes
Island Model, $n_d = 8$, $N = 10$ and $F_{ST} = 0.2$

- `imput`: WC_{84} estimates computed from allele counts estimated by maximum-likelihood
Island Model, $n_d = 8$, $N = 10$ and $F_{ST} = 0.2$

- **Imput**: WC_{84} estimates computed from allele counts estimated by maximum-likelihood

- Bias Imput $>>$ bias WC_{84}

The bias depends on the coverage
The model

We have developed \hat{F}_{ST}^{pool}, a new estimator of F_{ST} for Pool-seq data, in an analysis-of-variance framework1

- The total variance is decomposed into reads within individuals, individuals within demes and among demes

1Hivert et al. 2018.
The model

We have developed \hat{F}_{ST}^pool, a new estimator of F_{ST} for Pool-seq data, in an analysis-of-variance framework1

- The total variance is decomposed into reads within individuals, individuals within demes and among demes
- We assume an equal individual’s contribution into the pool of DNA (multinomial distribution of the reads)

1Hivert et al. 2018.
The model

We have developed \hat{F}_{ST}^{pool}, a new estimator of F_{ST} for Pool-seq data, in an analysis-of-variance framework\(^1\)

- The total variance is decomposed into reads within individuals, individuals within demes and among demes
- We assume an equal individual’s contribution into the pool of DNA (multinomial distribution of the reads)

$$\hat{F}_{ST}^{pool} = \frac{\sum_k [(C_1 - D_2) \sum_i^n C_{1i} (\hat{\pi}_{i:k} - \hat{\pi}_k)^2 - (D_2 - D_2^*) \sum_i^n C_{1i} \hat{\pi}_{i:k} (1 - \hat{\pi}_{i:k})]}{\sum_k [(C_1 - D_2) \sum_i^n C_{1i} (\hat{\pi}_{i:k} - \hat{\pi}_k)^2 + (n_c - 1)(D_2 - D_2^*) \sum_i^n C_{1i} \hat{\pi}_{i:k} (1 - \hat{\pi}_{i:k})]}$$

\(^1\)Hivert et al. 2018.
The model

We have developed \hat{F}_{ST}^{pool}, a new estimator of F_{ST} for Pool-seq data, in an analysis-of-variance framework\(^1\)

- The total variance is decomposed into reads within individuals, individuals within demes and among demes
- We assume an equal individual’s contribution into the pool of DNA (multinomial distribution of the reads)

\[
\hat{F}_{ST}^{pool} = \frac{\sum_k [(C_1 - D_2) \sum_i^{n_d} C_{1i}(\hat{\pi}_{i:k} - \hat{\pi}_k)^2 - (D_2 - D_2^* \sum_i^{n_d} C_{1i}\hat{\pi}_{i:k}(1 - \hat{\pi}_{i:k})] \sum_k [(C_1 - D_2) \sum_i^{n_d} C_{1i}(\hat{\pi}_{i:k} - \hat{\pi}_k)^2 + (n_c - 1)(D_2 - D_2^* \sum_i^{n_d} C_{1i}\hat{\pi}_{i:k}(1 - \hat{\pi}_{i:k})]}
\]

- We show that, in the limit case where all pools have the same size n:

\[
\hat{F}_{ST}^{pool} = 1 - \left(\frac{1 - \hat{Q}_1^r}{1 - \hat{Q}_2^r}\right) \left(\frac{n}{n - 1}\right)
\]

\(^1\)Hivert et al. 2018.
Island Model, $n_d = 8$, $N = 10$ and $F_{ST} = 0.2$
Island Model, $n_d = 8$, $N = 10$ and $F_{ST} = 0.2$

Bias $\hat{F}_{ST}^{pool} \simeq \text{bias } WC_{84}$

Independently on pool size, coverage and F_{ST} value
PoPolution2: identifying differentiation between populations using sequencing of pooled DNA samples (Pool-Seq)

Robert Kofler, Ram Vinay Pandey and Christian Schlötterer

Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, A-1210 Wien, Austria

Associate Editor: Jeffrey Barrett
Island Model, $n_d = 8$, $N = 100$ and $F_{ST} = 0.2$

- $PP2_d$: Population2 estimator computed from read counts
Island Model, $n_d = 8$, $N = 100$ and $F_{ST} = 0.2$

PP2$_d$: Population2 estimator computed from read counts

PP2$_d$ estimates are biased and it depends on the coverage.
Island Model, $n_d = 8$, $N = 100$ and $F_{ST} = 0.2$

PP2$_d$ estimates are biased and it depends on the coverage. It converges to the Nei and Chesser’s estimator $(NC_{83})^2$ as the coverage increases.

2Nei and Chesser 1938.
MOLECULAR ECOLOGY

Molecular Ecology (2017) 26, 25–42
doi: 10.1111/mec.13805

SPECIAL ISSUE: THE MOLECULAR MECHANISMS OF ADAPTATION AND SPECIATION: INTEGRATING GENOMIC AND MOLECULAR APPROACHES

Adaptive genomic divergence under high gene flow between freshwater and brackish-water ecotypes of prickly sculpin (Cottus asper) revealed by Pool-Seq

STEFAN DENNENMOSER,*† STEVEN M. VAMOSI,† ARNE W. NOLTE*‡ and SEAN M. ROGERS†
*Max-Planck Institute for Evolutionary Biology, August Thienemann Strasse 2, 24306, Plön, Germany, †Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary AB, Canada T2N 1N4, ‡Institute for Biology, Carl von Ossietzky University Oldenburg, Carl von Ossietzky Str. 9-11, 26111 Oldenburg, Germany

Brackish-water Fresh-water

© 2016 John Wiley & Sons Ltd
Conclusion

We developed an unbiased estimator of \(F_{ST} \) for Pool-seq data, in an analysis-of-variance framework.

- The accuracy is barely distinguishable from the analysis-of-variance estimator for individual data (Weir & Cockerham, 1984).
Conclusion

We developed an unbiased estimator of F_{ST} for Pool-seq data, in an analysis-of-variance framework.

- The accuracy is barely distinguishable from the analysis-of-variance estimator for individual data (Weir & Cockerham, 1984).
- The accuracy does not depend on the coverage or on the pool size.
Conclusion

We developed an unbiased estimator of F_{ST} for Pool-seq data, in an analysis-of-variance framework.

- The accuracy is barely distinguishable from the analysis-of-variance estimator for individual data (Weir & Cockerham, 1984).
- The accuracy does not depend on the coverage or on the pool size.
- Although our estimator is sensitive to uneven contributions of individual DNAs in each pool, we found that it was robust to sequencing errors, ascertainment bias, unequal sample sizes and variable coverages.
Conclusion

- We focused on global (multi-locus) genetic differentiation
Conclusion

- We focused on global (multi-locus) genetic differentiation

What about selection?

- It has been proposed to identify loci under selection from genomic scan of differentiation
Conclusion

How to distinguish local effect (selection) from global effect.
How to distinguish local effect (selection) from global effect (demography)?
Part II: A hierarchical Bayesian model for measuring the extent of local adaptation using linkage disequilibrium information
Allele frequencies distribution can be characterized conditionally on some demo-genetic model
A Genome-Scan Method to Identify Selected Loci Appropriate for Both Dominant and Codominant Markers: A Bayesian Perspective

Mathieu Foll and Oscar Gaggiotti

Laboratoire d'Écologie Alpine (LECA), CNRS UMR 5553, 38400 Grenoble Cedex 9, France
Manuscript received June 3, 2008
Accepted for publication July 25, 2008

Detecting and Measuring Selection from Gene Frequency Data

Renaud Vitalis,*† Mathieu Gautier,*† Kevin J. Dawson,* and Mark A. Beaumont1

*Institut National de la Recherche Agronomique, Unité Mixte de Recherche CIGE, Inra, Inra, Cira, Montpellier-SupAgro, 34398 Montferrier-sur-Lez Cedex, France, †Institut de Biologie Computationnelle, 34095 Montpellier Cedex, France, 1Cancer Genome ust Sanger Institute, Hinxton, CB10 1SA, United Kingdom, 2Department of Mathematics and School of Biological Sciences, University of Bristol, Bristol BS8 1TW, United Kingdom
Most methods generally neglect the information brought by linkage disequilibrium (LD) among genetic markers.
Hard-sweep

\[3 \text{Storz 2005.} \]
How to account for LD information?
How to account for LD information?

→ Extend SelEstim (Vitalis et al. 2014), a hierarchical bayesian model to the use of multi-allelic markers
How to account for LD information?

→ Extend SelEstim (Vitalis et al. 2014), a hierarchical bayesian model to the use of multi-allelic markers
The model

The data: haplotypes at many loci, in several populations (allele counts)
The model

The (unknown) allele frequencies. Approximation of a diffusion process as prior distribution \(\rightarrow \) migration-drift-selection equilibrium
Infinite island model: the population frequencies depend on $M_i = 4N_im_i$ and the frequencies in the migrant pool.

\[p_{ij} \rightarrow \pi_j \rightarrow M_i \rightarrow n_{ij} \]
The model

Genome-wide

Locus-specific

Population and locus-specific

Indicator variable
(one allele under selection)

\[\lambda \]

\[\delta_j \]

\[\kappa_{ij} \]

\[\sigma_{ij} \]

\[p_{ij} \]

\[\pi_j \]

\[M_i \]

\[n_{ij} \]
We use the Kullback-Leibler Divergence (KLD) as a distance between the posterior distributions of the δ_j's and a centering distribution.
Evaluation by simulations

individual-based forward-time simulations with demography and selection

Island model

N = 1000 diploid individuals
5 chromosomes of 5 Mb (selection on chromosome 1)
density of markers : 125 SNP/Mb
500 replicates per scenario
Evaluation by simulations

(1) Genotype data (SNP)

Simulated haplotypes

(2) Haplotype Clustering

Adaptive K allele sliding window

SelEstim analysis conducted on bialelic SNPs data

SelEstim analysis conducted on Haplotype markers

<table>
<thead>
<tr>
<th>Locus</th>
<th>chr. 1</th>
<th>chr. x</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>T</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>G</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>G</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>A</td>
</tr>
</tbody>
</table>

Chr. 1
1011110001010100010001010101011001010110
1000111000010101101001101011011000100
111111001111010010011110101000110101101
0011100001011000110010010110110110011
10111100010110110101100101011010110110

Chr. 6
101111000010110110101101010111011010110101011101011010110110
Example of SelEstim outputs

A. SelEstim_{SNP}

B. SelEstim_{HAP} K = 10
Method of analysis
Method of analysis
- Improved statistical power with haplotype-based analyses (vs. SNPs)
Power for Island Model

- FLK4 is an extent of the LK test (Lewontin and Krakauer 1973) to account for the hierarchical structure of populations
- HapFLK5 extent the model FLK to the use of haplotype data (HapFLK has its own clustering algorithm)

Both models are expected to better perform under a pure drift demography

4Bonhomme et al. 2010.
5Fariello et al. 2013.
Improved statistical power with haplotype-based analyses (vs. SNPs)

Outperform FLK and HapFLK
- Improved statistical power with haplotype-based analyses (vs. SNPs)
Improved statistical power with haplotype-based analyses (vs. SNPs)

Fall behind FLK and HapFLK
We considered hard-sweep scenarios. What happens with soft-sweep?
We considered hard-sweep scenarios. What happens with soft-sweep?
Power for Island Model with Soft sweep

- HardSweep
 - Type I error vs. Power
 - Red line: SelEstim SNPs
 - Blue line: SelEstim Hap

- SoftSweep
 - Type I error vs. Power
 - Red line: SelEstim SNPs
 - Blue line: SelEstim Hap
Power for Island Model with Soft sweep

Soft-sweep \rightarrow many alleles under selection (departure from the model assumption)
Conclusion

We developed a hierarchical bayesian model to measure the extent of local adaptation from haplotype data.

- LD information brought by haplotype data \rightarrow Increases the detection power of selection
We developed a hierarchical bayesian model to measure the extent of local adaptation from haplotype data.

- LD information brought by haplotype data → Increases the detection power of selection
- Be aware of the underlying demo-genetic models and assumptions as well as the robustness of the methods to model misspecifications
In this thesis, I developed new statistical methods of genetic differentiation analysis for NGS data in different framework:

A summary statistic of F_{ST} for Pool-seq data in a frequentist approach:

- To properly estimate the genetic differentiation from Pool-seq data, we need to account for the different levels of sampling.
- Use of biased estimators \rightarrow problem for genome scan when variable coverage on the genome.
In this thesis, I developed new statistical methods of genetic differentiation analysis for NGS data in different framework:

A hierarchical bayesian model for the detection of signature of selection from haplotype data:

- LD information brought by high density data increases the power to detect selection
- We considered an equilibrium model → beware of confounding effects (allele surfing...)

General conclusion and perspectives
In this thesis, I developed new statistical methods of genetic differentiation analysis for NGS data in different framework:

A hierarchical bayesian model for the detection of signature of selection from haplotype data:

- LD information brought by high density data increases the power to detect selection
- We considered an equilibrium model → beware of confounding effects (allele surfing...)

The nature of the data used in the two parts are different
Is it possible to estimate haplotype frequencies from Pool-seq?

- Models exist but need information about the pool of haplotypes (Cao et Sun 2015; Kessner et al. 2013; Long et al. 2011) or are specifically designed for E&R experiences (Franssen et al. 2017).
General conclusion and perspectives

Is it possible to estimate haplotype frequencies from Pool-seq?

- Models exist but need information about the pool of haplotypes (Cao et Sun 2015; Kessner et al. 2013; Long et al. 2011) or are specifically designed for E&R experiences (Franssen et al. 2017).

Is it possible to account for LD with unphased data (i.e. Pool-seq)?

- Investigation of a smoothing model incorporate in SelEstim to account for the spatial correlation between markers.
General conclusion and perspectives

Genome scans are a first step to identifying putative genomic regions under selection

- Poor reproducibility among methods (Pritchard et al. 2010)
- Functional validation of candidate genes
Acknowledgments

The jury members
- Christine Dillmann (R)
- Anna-Sapfo Malaspinas (R)
- Miguel Pérez-Enciso (E)
- Joëlle Ronfort (E)

The comitees members
- Stephanie Manel
- Michael Blum
- Simon Boitard
- Bertrand Servin

My supervisors
- Renaud Vitalis
- Mathieu Gautier

The "Team" colleagues
- Arnaud Estoup
- Raphaël Leblois
- Miguel Navascués
- Alexandre Dehne-Garcia

Thanks to all of the CBGP colleagues and friends