Analysis of genetic differentiation at the NGS era

Valentin Hivert
INRA CBGP Montferrier-sur-Lez

Thesis defense, December $14^{\text {th }} 2018$

Supervisors : Renaud Vitalis, Mathieu Gautier

Gouskov \＆al． 2015

Athanasiadis \＆al． 2016

Gouskov \& al. 2015

Athanasiadis \& al. 2016

The spatial and temporal organisation of individuals in groups
(subpopulation, social group, family...) foster the genetic differentiation \rightarrow differences in allele frequencies between groups

Evolutionary forces :

- Mutation
- Genetic drift
- Gene flow
- Selection

Evolutionary forces :

- Global effect :
- Genetic drift
- Gene flow
- Local effect :
- Mutation
- Selection

Effect of Gene flow and selection on genetic differentiation

Genome-wide effect

- Homogenizes the allele frequencies \rightarrow decreases the allele frequencies variance between demes

Effect of Gene flow and selection on genetic differentiation

Genome-wide effect

- Homogenizes the allele frequencies \rightarrow decreases the allele frequencies variance between demes

Effect of Gene flow and selection on genetic differentiation

Local effect on the genome

- Increases the allele frequencies variance between demes

Effect of Gene flow and selection on genetic differentiation

Local effect on the genome

Effect of Gene flow and selection on genetic differentiation

Local effect on the genome

We need to characterize the genetic variability at a genomic scale

The genomic revolution

Next Generation Sequencing (NGS) :

- Very large numbers of markers $\rightarrow x 10^{6}$ markers

The genomic revolution

Next Generation Sequencing (NGS) :

- Very large numbers of markers $\rightarrow x 10^{6}$ markers
- Allows to characterize genetic variability at a pan-genomic scale and at a lower cost

The genomic revolution

Next Generation Sequencing (NGS) :

- Very large numbers of markers $\rightarrow x 10^{6}$ markers
- Allows to characterize genetic variability at a pan-genomic scale and at a lower cost
- High density of markers allows the use of linkage information

The genomic revolution

Next Generation Sequencing (NGS) :

- Very large numbers of markers $\rightarrow x 10^{6}$ markers
- Allows to characterize genetic variability at a pan-genomic scale and at a lower cost
- High density of markers allows the use of linkage information

NGS \rightarrow change in the nature of data

Main research axis

My thesis focuses on the development of new statistical methods of genetic differentiation analysis from NGS data

- Development of an estimator of genetic differentiation, from NGS data

Main research axis

My thesis focuses on the development of new statistical methods of genetic differentiation analysis from NGS data

- Development of an estimator of genetic differentiation, from NGS data
- Development of a new method of genetic differentiation analysis, for the research of signature of selection from high density NGS data

Part I: Measuring genetic differentiation from Pool-seq data
$F_{\mathrm{ST}} \rightarrow 1$

- F_{ST} is defined as the portion of the total genetic variance explained by the genetic variance between subpopulations

$$
F_{\mathrm{ST}} \rightarrow 0
$$

$$
F_{\mathrm{ST}} \rightarrow 1
$$

- F_{ST} is defined as the portion of the total genetic variance explained by the genetic variance between subpopulations
- F_{ST} is classically estimated under an analysis-of-variance framework (Weir \& Cockerham 1984)

$$
F_{\mathrm{ST}} \rightarrow 0
$$

$$
F_{\mathrm{ST}} \rightarrow 1
$$

$$
F_{\mathrm{ST}}=\frac{Q_{1}-Q_{2}}{1-Q_{2}}
$$

- It can be expressed in terms of probabilities of identity in states for pairs of genes (Cockerham 1973; Rousset 2007)

$$
F_{\mathrm{ST}} \rightarrow 0
$$

$$
F_{\mathrm{ST}} \rightarrow 1
$$

$$
F_{\mathrm{ST}}=\frac{Q_{1}-Q_{2}}{1-Q_{2}}
$$

- It can be expressed in terms of probabilities of identity in states for pairs of genes (Cockerham 1973; Rousset 2007)
- F_{ST} can be estimated with \hat{Q}_{1} and \hat{Q}_{2}

$$
F_{\mathrm{ST}} \rightarrow 0
$$

$$
F_{\mathrm{ST}} \rightarrow 1
$$

$$
F_{\mathrm{ST}}=\frac{Q_{1}-Q_{2}}{1-Q_{2}}
$$

- It can be expressed in terms of probabilities of identity in states for pairs of genes (Cockerham 1973; Rousset 2007)
- F_{ST} can be estimated with \hat{Q}_{1} and \hat{Q}_{2}

Equal sample sizes \rightarrow strictly reduces to the analysis-of-variance estimator (Weir \& Cockerham, 1984)

We are interested in the variance of allele frequencies at the population scale

The Pool-seq \rightarrow a cost-effective alternative to individual genotyping

The Pool-seq process

pooling

The Pool-seq process

pooling

Sequencing (10x coverage)

The Pool-seq process

pooling

Sequencing (10x coverage)

The Pool-seq process

How can we estimate F_{ST} from Pool-seq data ?

The Pool-seq process

$$
\hat{F}_{\mathrm{ST}}^{\text {reads }}=\frac{\hat{Q}_{1}^{r}-\hat{Q}_{2}^{r}}{1-\hat{Q}_{2}^{r}}
$$

Island model

Island Model, $n_{d}=8, N=10$ and $F_{\mathrm{ST}}=0.2$

Ind-seq Pool-seq (coverage)
$\square \square$ 20X \square 50X \square 100X

- WC_{84} : analysis-of-variance estimates (Weir \& Cockerham 1984) computed from individual data (allele counts)
- reads: estimates computed directly from read counts IIS probabilities

Island Model, $n_{d}=8, N=10$ and $F_{\text {ST }}=0.2$

- WC_{84} : analysis-of-variance estimates (Weir \& Cockerham 1984) computed from individual data (allele counts)
- reads: estimates computed directly from read counts IIS probabilities

Bias reads \gg bias WC_{84}

Island Model, $n_{d}=8, N=10$ and $F_{\text {ST }}=0.2$

- WC_{84} : analysis-of-variance estimates (Weir \& Cockerham 1984) computed from individual data (allele counts)
- reads : estimates computed directly from read counts IIS probabilities

Ind-seq Pool-seq (coverage)
$\square \square 20 \mathrm{X} \quad \square$ 50X $\square 100 \mathrm{X}$
Bias reads \gg bias WC_{84}
The bias depends on the pool size

Island Model, $n_{d}=8, N=10$ and $F_{\text {ST }}=0.2$

- WC_{84} : analysis-of-variance estimates (Weir \& Cockerham 1984) computed from individual data (allele counts)
- reads : estimates computed directly from read counts IIS probabilities

Ind-seq Pool-seq (coverage)
$\square \square 20 \mathrm{X} \quad \square$ 50X $\square 100 \mathrm{X}$
Bias reads \gg bias WC_{84}
The bias depends on the pool size

Sample of individuals

Pool-seq (6x)

Alternative : estimation of individual counts by Maximum likelihood from reads frequencies and pool sizes

Island Model, $n_{d}=8, N=10$ and $F_{\mathrm{ST}}=0.2$

- imput: WC_{84} estimates computed from allele counts estimated by maximum-likelihood

Ind-seq Pool-seq (coverage)
$\square \square 20 \mathrm{X} \quad \square 50 \mathrm{X} \quad \square 100 \mathrm{X}$

Island Model, $n_{d}=8, N=10$ and $F_{\mathrm{ST}}=0.2$

- imput : WC84 estimates computed from allele counts estimated by maximum-likelihood

Ind-seq Pool-seq (coverage)
$\square \quad \square$ 20x 50X $\square 100 \mathrm{X}$

Bias Imput \gg bias WC_{84}
The bias depends on the coverage

The model

We have developed $\hat{F}_{\mathrm{ST}}^{\text {pool }}$, a new estimator of F_{ST} for Pool-seq data, in an analysis-of-variance framework ${ }^{1}$

- The total variance is decomposed into reads within individuals, individuals within demes and among demes

The model

We have developed $\hat{F}_{\mathrm{ST}}^{\text {pool }}$, a new estimator of F_{ST} for Pool-seq data, in an analysis-of-variance framework ${ }^{1}$

- The total variance is decomposed into reads within individuals, individuals within demes and among demes
- We assume an equal individual's contribution into the pool of DNA (multinomial distribution of the reads)

[^0]
The model

We have developed $\hat{F}_{\mathrm{ST}}^{\text {pool }}$, a new estimator of F_{ST} for Pool-seq data, in an analysis-of-variance framework ${ }^{1}$

- The total variance is decomposed into reads within individuals, individuals within demes and among demes
- We assume an equal individual's contribution into the pool of DNA (multinomial distribution of the reads)

$$
\hat{F}_{\mathrm{ST}}^{\mathrm{pool}}=\frac{\sum_{k}\left[\left(C_{1}-D_{2}\right) \sum_{i}^{n_{\mathrm{d}}} C_{1 i}\left(\hat{\pi}_{i: k}-\hat{\pi}_{k}\right)^{2}-\left(D_{2}-D_{2}^{\star}\right) \sum_{i}^{n_{\mathrm{d}}} C_{1 ;} \hat{\pi}_{i: k}\left(1-\hat{\pi}_{i: k}\right)\right]}{\sum_{k}\left[\left(C_{1}-D_{2}\right) \sum_{i}^{n_{\mathrm{d}}} C_{1 i}\left(\hat{\pi}_{i: k}-\hat{\pi}_{k}\right)^{2}+\left(n_{\mathrm{c}}-1\right)\left(D_{2}-D_{2}^{\star}\right) \sum_{i}^{n_{\mathrm{d}}} C_{1 i} \hat{\pi}_{i: k}\left(1-\hat{\pi}_{i: k}\right)\right]}
$$

[^1]
The model

We have developed $\hat{F}_{\mathrm{ST}}^{\text {pool }}$, a new estimator of F_{ST} for Pool-seq data, in an analysis-of-variance framework ${ }^{1}$

- The total variance is decomposed into reads within individuals, individuals within demes and among demes
- We assume an equal individual's contribution into the pool of DNA (multinomial distribution of the reads)

$$
\hat{F}_{\mathrm{ST}}^{\mathrm{pool}}=\frac{\sum_{k}\left[\left(C_{1}-D_{2}\right) \sum_{i}^{n_{\mathrm{d}}} C_{1 i}\left(\hat{\pi}_{i: k}-\hat{\pi}_{k}\right)^{2}-\left(D_{2}-D_{2}^{\star}\right) \sum_{i}^{n_{\mathrm{d}}} C_{1 ;} \hat{\pi}_{i: k}\left(1-\hat{\pi}_{i: k}\right)\right]}{\sum_{k}\left[\left(C_{1}-D_{2}\right) \sum_{i}^{n_{\mathrm{d}}} C_{1 i}\left(\hat{\pi}_{i: k}-\hat{\pi}_{k}\right)^{2}+\left(n_{\mathrm{c}}-1\right)\left(D_{2}-D_{2}^{\star}\right) \sum_{i}^{n_{\mathrm{d}}} C_{1 i} \hat{\pi}_{i: k}\left(1-\hat{\pi}_{i: k}\right)\right]}
$$

- We show that, in the limit case where all pools have the same size n :

$$
\hat{F}_{\mathrm{ST}}^{\mathrm{pool}}=1-\left(\frac{1-\hat{Q}_{1}^{\mathrm{r}}}{1-\hat{Q}_{2}^{\mathrm{r}}}\right)\left(\frac{n}{n-1}\right)
$$

[^2]
Island Model, $n_{d}=8, N=10$ and $F_{\mathrm{ST}}=0.2$

Island Model, $n_{d}=8, N=10$ and $F_{\mathrm{ST}}=0.2$

Bias $\hat{F}_{\mathrm{ST}}^{\text {pool }} \simeq$ bias WC_{84}
Independently on pool size, coverage and F_{ST} value

BIOINFORMIATICS APPLICATIONS NOTE

Vol. 27 no. 24 2011, pages 3435-3436 doi:10.1093/bioinformatics/btr589

PoPoolation2: identifying differentiation between populations

 using sequencing of pooled DNA samples (Pool-Seq)Robert Kofler, Ram Vinay Pandey and Christian Schlötteref
Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, A-1210 Wien, Austria Associate Editor: Jeffrey Barrett

Island Model, $n_{d}=8, N=100$ and $F_{\mathrm{ST}}=0.2$

- $\mathrm{PP} 2_{\mathrm{d}}$: Popoolation2 estimator computed from read counts

Island Model, $n_{d}=8, N=100$ and $F_{\mathrm{ST}}=0.2$

- $\mathrm{PP} 2_{\mathrm{d}}$: Popoolation2 estimator computed from read counts

Ind-seq Pool-seq (coverage)
$\square \square 20 \mathrm{X} \quad \square 50 \mathrm{X} \quad \square 100 \mathrm{X}$
$\mathrm{PP} 2_{\mathrm{d}}$ estimates are biased and it depends on the coverage.

Island Model, $n_{d}=8, N=100$ and $F_{\mathrm{ST}}=0.2$

- NC_{83} : Heterozygosity based estimator (Nei \& Chesser 1983) computed from individual data
- $\mathrm{PP} 2_{\mathrm{d}}$: Popoolation2 estimator computed from read counts

Ind-seq Pool-seq (coverage)
$\square \quad \square$ 20X $\square 50 \mathrm{X} \quad \square 100 \mathrm{X}$
$\mathrm{PP} 2_{\mathrm{d}}$ estimates are biased and it depends on the coverage.
It converges to the Nei and Chesser's estimator $\left(\mathrm{NC}_{83}\right)^{2}$ as the coverage increases
${ }^{2}$ Nei and Chesser 1938.

MOLECULAR ECOLOGY

Molecular Ecology（2017）26，25－42

SPECIAL ISSUE：THE MOLECULAR MECHANISMS OF ADAPTATION AND SPECIATION：INTEGRATING GENOMIC AND MOLECULAR APPROACHES
Adaptive genomic divergence under high gene flow between freshwater and brackish－water ecotypes of prickly sculpin（Cottus asper）revealed by Pool－Seq

STEFAN DENNENMOSER，＊\dagger STEVEN M．VAMOSI,\dagger ARNE W．NOLTE $\ddagger \ddagger$ and SEAN M．ROGERS \dagger
＊Max－Planck Institute for Evolutionary Biology，August Thienemann Strasse 2，24306，Plön，Germany，†Department of Biological Sciences，University of Calgary， 2500 University Drive NW，Calgary AB，Canada T2N 1N4，\ddagger Institute for Biology， Carl von Ossietzky University Oldenburg，Carl von Ossietzky Str．9－11， 26111 Oldenburg，Germany

Brackish－water Fresh－water

© 2016 John Wiley \＆Sons Ltd

B.

Conclusion

We developed an unbiased estimator of $F_{\text {ST }}$ for Pool-seq data, in an analysis-of-variance framework.

- The accuracy is barely distinguishable from the analysis-of-variance estimator for individual data (Weir \& Cockerham, 1984).

Conclusion

We developed an unbiased estimator of F_{ST} for Pool-seq data, in an analysis-of-variance framework.

- The accuracy is barely distinguishable from the analysis-of-variance estimator for individual data (Weir \& Cockerham, 1984).
- The accuracy does not depend on the coverage or on the pool size.

Conclusion

We developed an unbiased estimator of F_{ST} for Pool-seq data, in an analysis-of-variance framework.

- The accuracy is barely distinguishable from the analysis-of-variance estimator for individual data (Weir \& Cockerham, 1984).
- The accuracy does not depend on the coverage or on the pool size.
- Although our estimator is sensitive to uneven contributions of individual DNAs in each pool, we found that it was robust to sequencing errors, ascertainment bias, unequal sample sizes and variable coverages.

Conclusion

- We focused on global (multi-locus) genetic differentiation

Conclusion

- We focused on global (multi-locus) genetic differentiation

What about selection?

- It has been proposed to identify loci under selection from genomic scan of differentiation

Conclusion

Conclusion

- How to distinguish local effect (selection) from global effect (demography) ?

Part II : A hierarchical Bayesian model for measuring the extent of local adaptation using linkage disequilibrium information

Allele frequencies distribution can be characterized conditionally on some demo-genetic model

A Genome-Scan Method to Identify Selected Loci Appropriate for Both Dominant and Codominant Markers: A Bayesian Perspective

Matthieu Foll ${ }^{1}$ and Oscar Gaggiotti
Laborataire d'Ecologie Alpine (LECA), CNRS UMR 5553, 38041 Gronoble Celex C9, Fronce
Manuscript received June 3, 2008
Accepted for publication July 23, 2008

Detecting and Measuring Selection from Gene Frequency Data

Renaud Vitalis,***. Mathieu Gautier, ${ }^{*, 1}$ Kevin J. Dawson,' and Mark A. Beaumont ${ }^{\text {T}}$ Institut National de ta Recherche Agronomique, Unité Mixte de Recherche CBGP, Inra, rd, Cirad, Montpellie-SupAgro) 34988 Montterier-sur-Lez Cedex, France, ${ }^{1}$ Institut de Biologie Computationnelle, 34095 Montpelier Cedex, France, ${ }^{4}$ Cancer Genome st Sanger Inslitute, Hinxton, CB10 15A, United Kingdom, §Department of Mathematics and School or

A Genome-Scan Method to Identify Selected Loci Appropriate for Both Dominant and Codominant Markers: A Bayesian Perspective

Matthieu Foll ${ }^{1}$ and Oscar Gaggiotti
Laborataire d'Ecologie Alpine (LECA), CNRS UMR 5553, 38041 Grobble Celex C9, Fronct
Manuscript received June 3, 2008
Accepted for publication July 23, 2008

Detecting and Measuring Selection from Gene Frequency Data

Renaud Vitalis,***' Mathieu Gautier,**' Kevin J. Dawson,' and Mark A. Beaumont nstitut National de la Recherche Agronomique, Unité Mixte de Racherche CBGP, Inra, rd, Cirad, Montpellie-SupAgro) 34988 Montterner-sur-Lez Cedex, France, 'Institut de Biologie Computationnelle, 34095 Montpelier Cedex, France, Canke Genome st Sanger Inslitute, Hinxton, CB10 15A, United Kingdom, §Department of Mathemaiic and School of Biolcgical Scences, University of Bristol, Bristol B58 1TW, United Kirgdom

Most methods generally neglect the information brought by linkage
disequilibrium (LD) among genetic markers

Hard-sweep

${ }^{3}$ Storz 2005.

How to account for LD information?

How to account for LD information?

\rightarrow Extend SelEstim (Vitalis et al. 2014), a hierarchical bayesian model to the use of multi-allelic markers

```
10001010110000101
11001011110011101
11001011110010011
10001010010010001
01001011010011011
01111011010011101
11011010010011000
SNPs
\(\longrightarrow \longrightarrow\)\begin{tabular}{c}
10001010110000101 \\
11001011110011101 \\
11001011110010011 \\
10001010010010001 \\
01001011010011011 \\
01111011010011101 \\
11011010010011000 \\
haplotypes \\
(multiallelic markers)
\end{tabular}
```

How to account for LD information?
\rightarrow Extend SelEstim (Vitalis et al. 2014), a hierarchical bayesian model to the use of multi-allelic markers

Adaptive K allele sliding window

The model

10001010110000101 11001011110011101 11001011110010011 10001010010010001 01001011010011011 01111011010011101 11011010010011000

The data : haplotypes at many loci, in several populations (allele counts)

The model

0001010110000101
11001011110011101
11001011110010011 10001010010010001 01001011010011011 01111011010011101 11011010010011000

The (unknown) allele frequencies. Approximation of a diffusion process as prior distribution
\rightarrow migration-drift-selection equilibrium

The model

10001010110000101 11001011110011101 11001011110010011 10001010010010001 01001011010011011 01111011010011101 11011010010011000

Infinite island model: the population frequencies depend on $M_{i}=4 N_{i} m_{i}$ and the frequencies in the migrant pool

The model

The decision criterion

- We use the Kullback-Leibler Divergence (KLD) as a distance between the posterior distributions of the δ_{j} 's and a centering distribution

Evaluation by simulations

individual-based forward-time simulations with demography and selection

Island model

$\mathrm{N}=1000$ diploid individuals
5 chromosomes of 5 Mb (selection on chromosome 1)
density of markers : 125 SNP/Mb
500 replicates per scenario

Evaluation by simulations

(1) Genotype data (SNP)

(2) Haplotype Clustering

Adaptive K allele sliding window
SNP focal 1

SNP focal 2

Chr. 11011110001010100010001010106110101010110
. 1000011100001101101001101011010110000100
. 1111110011010100011101110100010110010110
. 0011100001011100011001010101110101110011
. 1011110001011101011001010100110101011100
Chr. 61011110001010011011010010100111001010110

SelEstim analysis conducted
on Haplotype markers

Example of SelEstim outputs

A. SelEstim ${ }_{\text {SNP }}$

Position (bp)
B. SelEstim HAP $\mathrm{K}=10$

Method of analysis

Method of analysis

Power for Island Model

- Improved statistical power with haplotype-based analyses (vs. SNPs)

Power for Island Model

- FLK ${ }^{4}$ is an extent of the LK test (Lewontin and Krakauer 1973) to account for the hierarchical structure of populations
- HapFLK ${ }^{5}$ extent the model FLK to the use of haplotype data (HapFLK has is own clustering algorithm)

Both models are expected to better perform under a pure drift demography

[^3]
Power for Island Model

- Improved statistical power with haplotype-based analyses (vs. SNPs)
- Outperform FLK and HapFLK

Power for Pure Drift Model

- - SelEstim SNPs - SelEstim Hap
- Improved statistical power with haplotype-based analyses (vs. SNPs)

Power for Pure Drift Model

- - SelEstim SNPs - SelEstim Hap
- FLK - HapFLK
- Improved statistical power with haplotype-based analyses (vs. SNPs)
- Fall behind FLK and HapFLK

We considered hard-sweep scenarios. What happens with soft-sweep?

We considered hard-sweep scenarios. What happens with soft-sweep?

Power for Island Model with Soft sweep

Power for Island Model with Soft sweep

- - SelEstim SNPs - SelEstim Hap

Soft-sweep \rightarrow many alleles under selection (departure from the model assumption)

Conclusion

We developed a hierarchical bayesian model to measure the extent of local adaptation from haplotype data.

- LD information brought by haplotype data \rightarrow Increases the detection power of selection

Conclusion

We developed a hierarchical bayesian model to measure the extent of local adaptation from haplotype data.

- LD information brought by haplotype data \rightarrow Increases the detection power of selection
- Be aware of the underlying demo-genetic models and assumptions as well as the robustness of the methods to model misspecifications

General conclusion and perspectives

In this thesis, I developed new statistical methods of genetic differentiation analysis for NGS data in different framework :

A summary statistic of F_{ST} for Pool-seq data in a frequentist approach

- To properly estimate the genetic differentiation from Pool-seq data, we need to account for the different levels of sampling
- Use of biased estimators \rightarrow problem for genome scan when variable coverage on the genome

General conclusion and perspectives

In this thesis, I developped new statistical methods of genetic differentiation analysis for NGS data in different framework :

A hierarchical bayesian model for the detection of signature of selection from haplotype data

- LD information brought by high density data increases the power to detect selection
- We considered an equilibrium model \rightarrow beware of confonding effects (allele surfing...)

General conclusion and perspectives

In this thesis, I developped new statistical methods of genetic differentiation analysis for NGS data in different framework :

A hierarchical bayesian model for the detection of signature of selection from haplotype data

- LD information brought by high density data increases the power to detect selection
- We considered an equilibrium model \rightarrow beware of confonding effects (allele surfing...)

The nature of the data used in the two parts are different

General conclusion and perspectives

Is it possible to estimate haplotype frequencies from Pool-seq ?

- Models exist but need information about the pool of haplotypes (Cao et Sun 2015; Kessner et al. 2013; Long et al. 2011) or are specifically designed for E\&R experiences (Franssen et al. 2017).

General conclusion and perspectives

Is it possible to estimate haplotype frequencies from Pool-seq ?

- Models exist but need information about the pool of haplotypes (Cao et Sun 2015; Kessner et al. 2013; Long et al. 2011) or are specifically designed for E\&R experiences (Franssen et al. 2017).

Is it possible to account for LD with unphased data (i.e Pool-seq) ?

- Investigation of a smoothing model incorporate in SelEstim to account for the spatial correlation between markers

General conclusion and perspectives

Genome scans are a first step to identifying putative genomic regions under selection

- Poor reproducibility among methods (Pritchard et al. 2010)
- Functional validation of candidate genes

Acknowledgments

The jury members

- Christine Dillmann (R)
- Anna-Sapfo Malaspinas (R)
- Miguel Pérez-Enciso (E)
- Joëlle Ronfort (E)

My supervisors

- Renaud Vitalis
- Mathieu Gautier

The comitees members

- Stephanie Manel
- Michael Blum
- Simon Boitard
- Bertrand Servin

The "Team" colleagues

- Arnaud Estoup
- Raphaël Leblois
- Miguel Navascués
- Alexandre Dehne-Garcia

[^0]: ${ }^{1}$ Hivert et al. 2018.

[^1]: ${ }^{1}$ Hivert et al. 2018.

[^2]: ${ }^{1}$ Hivert et al. 2018.

[^3]: ${ }^{4}$ Bonhomme et al. 2010.
 ${ }^{5}$ Fariello et al. 2013.

