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We are interested in the variance of allele frequencies at the

population scale

The Pool-seq → a cost-e�ective alternative to individual

genotyping
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The Pool-seq process

?

How can we estimate FST from Pool-seq data ?
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Island model
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Allele counts

         Pool-seq data 

Read counts
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The model

We have developed F̂
pool
ST , a new estimator of FST for Pool-seq

data, in an analysis-of-variance framework1

The total variance is decomposed into reads within individuals,

individuals within demes and among demes

We assume an equal individual's contribution into the pool of

DNA (multinomial distribution of the reads)

F̂
pool
ST =

∑
k [(C1−D2)

∑nd
i
C1i (π̂i :k−π̂k )

2−(D2−D?
2
)
∑nd

i
C1i π̂i :k (1−π̂i :k )]∑

k [(C1−D2)
∑nd

i
C1i (π̂i :k−π̂k )

2+(nc−1)(D2−D?
2 )

∑nd
i
C1i π̂i :k (1−π̂i :k )]

We show that, in the limit case where all pools have the same

size n:

F̂
pool
ST = 1−

(
1− Q̂r

1

1− Q̂r
2

)(
n

n − 1

)

1
Hivert et al. 2018.
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Island Model, nd = 8, N = 100 and FST = 0.2
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NC83 : Heterozygosity based
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PP2d : Popoolation2 estimator
computed from read counts

PP2d estimates are biased and it depends on the coverage.

It converges to the Nei and Chesser's estimator (NC83)
2 as the

coverage increases.
2
Nei and Chesser 1938.
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Conclusion

We developed an unbiased estimator of FST for Pool-seq data, in

an analysis-of-variance framework.

The accuracy is barely distinguishable from the

analysis-of-variance estimator for individual data (Weir &

Cockerham, 1984).

The accuracy does not depend on the coverage or on the pool

size.

Although our estimator is sensitive to uneven contributions of

individual DNAs in each pool, we found that it was robust to

sequencing errors, ascertainment bias, unequal sample sizes

and variable coverages.
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How to distinguish local e�ect (selection) from global e�ect

(demography) ?
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Part II : A hierarchical Bayesian model for measuring the extent of

local adaptation using linkage disequilibrium information
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Allele frequencies distribution can be characterized conditionally on

some demo-genetic model
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Most methods generally neglect the information brought by linkage

disequilibrium (LD) among genetic markers
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Hard-sweep

3

3
Storz 2005.
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How to account for LD information?

→ Extend SelEstim (Vitalis et al. 2014), a hierarchical bayesian

model to the use of multi-allelic markers
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The model

10001010110000101
11001011110011101
11001011110010011
10001010010010001
01001011010011011
01111011010011101
11011010010011000

The data : haplotypes at 
m a n y  l o c i ,  i n  s e v e r a l 
populations (allele counts)
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The model

10001010110000101
11001011110011101
11001011110010011
10001010010010001
01001011010011011
01111011010011101
11011010010011000

T h e  ( u n k n o w n )  a l l e l e 
frequencies. Approximation 
of a diffusion process as 
prior distribution 

migration-drift-selection 
equilibrium
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The model

Infinite island model: the population 
frequencies depend on Mi = 4Nimi 
and the frequencies in the migrant 
pool

10001010110000101
11001011110011101
11001011110010011
10001010010010001
01001011010011011
01111011010011101
11011010010011000
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The model

Genome-wide

Locus-specific

Population and locus-specific

Indicator variable
(one allele under 

selection)

10001010110000101
11001011110011101
11001011110010011
10001010010010001
01001011010011011
01111011010011101
11011010010011000
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The decision criterion
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We use the Kullback-Leibler Divergence (KLD) as a distance

between the posterior distributions of the δj 's and a centering

distribution
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Evaluation by simulations

individual-based forward-time simulations with demography and

selection

N N

N N

Island model

N = 1000 diploid individuals
5 chromosomes of 5 Mb (selection on chromosome 1)
density of markers : 125 SNP/Mb
500 replicates per scenario
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Evaluation by simulations

(2) Haplotype Clustering

(1) Genotype data (SNP)

SelEstim analysis conducted
on Haplotype markers

 Adaptive K allele sliding window

SelEstim analysis conducted 
on biallelic SNPs data

chr. 1

chr. x

Locus     1  2  3  4  5 

SNP focal 1 SNP focal 2

Chr. 1
.
.
.
.

Chr. 6

Simulated haplotypes
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Example of SelEstim outputs
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Method of analysis

33/42



Introduction FST Pool-seq SelEstim General conclusion and perspectives

Method of analysis

Type I error : 5%
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Power for Island Model

Improved statistical power with haplotype-based analyses (vs.

SNPs)
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Power for Island Model

FLK4 is an extent of the LK test (Lewontin and Krakauer

1973) to account for the hierarchical structure of populations

HapFLK5 extent the model FLK to the use of haplotype data

(HapFLK has is own clustering algorithm)

Both models are expected to better perform under a pure drift

demography

4
Bonhomme et al. 2010.

5
Fariello et al. 2013.
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Power for Island Model

Improved statistical power with haplotype-based analyses (vs.

SNPs)

Outperform FLK and HapFLK
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Power for Pure Drift Model

Improved statistical power with haplotype-based analyses (vs.

SNPs)
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Power for Pure Drift Model

Improved statistical power with haplotype-based analyses (vs.

SNPs)

Fall behind FLK and HapFLK
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We considered hard-sweep scenarios. What happens with

soft-sweep?
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Power for Island Model with Soft sweep

Soft-sweep → many alleles under selection (departure from the

model assumption)
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Conclusion

We developed a hierarchical bayesian model to measure the extent

of local adaptation from haplotype data.

LD information brought by haplotype data → Increases the

detection power of selection

Be aware of the underlying demo-genetic models and

assumptions as well as the robustness of the methods to model

misspeci�cations
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General conclusion and perspectives

In this thesis, I developed new statistical methods of genetic

di�erentiation analysis for NGS data in di�erent framework :

A summary statistic of FST for Pool-seq data in a frequentist

approach

To properly estimate the genetic di�erentiation from Pool-seq

data, we need to account for the di�erent levels of sampling

Use of biased estimators → problem for genome scan when

variable coverage on the genome
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General conclusion and perspectives

In this thesis, I developped new statistical methods of genetic

di�erentiation analysis for NGS data in di�erent framework :

A hierarchical bayesian model for the detection of signature of

selection from haplotype data

LD information brought by high density data increases the

power to detect selection

We considered an equilibrium model → beware of confonding

e�ects (allele sur�ng...)

The nature of the data used in the two parts are di�erent
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General conclusion and perspectives

Is it possible to estimate haplotype frequencies from Pool-seq ?

Models exist but need information about the pool of

haplotypes (Cao et Sun 2015; Kessner et al. 2013; Long et al.

2011) or are speci�cally designed for E&R experiences

(Franssen et al. 2017).

Is it possible to account for LD with unphased data (i.e Pool-seq) ?

Investigation of a smoothing model incorporate in SelEstim to

account for the spatial correlation between markers
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General conclusion and perspectives

Genome scans are a �rst step to identifying putative genomic

regions under selection

Poor reproducibility among methods (Pritchard et al. 2010)

Functional validation of candidate genes
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