EMPIRICAL AND METHODOLOGICAL RESEARCH IN BIOGEOGRAPHY, POPULATION GENETICS, AND PHYLOGENETICS

Josselin Cornuault, ISEM, Montpellier 9 janvier 2024

HEMOSPORIDIAN PARASITES

_

DIVERSITY IN THE MASCARENES

Josselin Cornuault, Christophe Thébaud, Philippe Heeb, Borja Mila, Ben Warren, Thomas Duval

Lab Evolution & Diversité Biologique

HEMOSPORIDIAN PARASITES — GENERALITIES

HEMOSPORIDIAN PARASITES — GENERALITIES

Hemosporidian Parasites – Diveristy in the Mascarenes

Leucocytozoon

Plasmodium

26 lineages

> 10 lineages

Leucocytozoon

Plasmodium

26 lineages

10 lineages

Proximal determinants of diversity:

- Number of colonizations
- Colonization time
- Diversification rate

Hemosporidian Parasites – Diveristy in the Mascarenes

	Leucocytozoon	Plasmodium
Colonization #	+	_
Colonization times	+	1
Diversification rate		=

Greater diversity in Leucocytozoon

GENETIC STRUCTURE IN PHELSUMA BORBONICA

_

IMPLICATIONS FOR CONSERVATION

Josselin Cornuault, Mickaël Sanchez, Thomas Duval, Antoine Fouquet, Christophe Thébaud

Lab Evolution & Diversité Biologique

PHELSUMA BORBONICA — GENERALITIES

- Almost endemic to Reunion island
- Endangered species (IUCN)
- Human-altered habitat
- Geographically-structured color variation

PHELSUMA BORBONICA — GENERALITIES

- Almost endemic to Reunion island
- Endangered species (IUCN)
- Human-altered habitat
- Geographically-structured color variation

Genetic structure?

Different evolutionary significant units?

PHELSUMA BORBONICA — MTDNA STRUCTURE

PHELSUMA BORBONICA — MICROSATELLITE STRUCTURE

PHELSUMA BORBONICA — MICROSATELLITE STRUCTURE

High F_{st}'s for some populations:

- Dimitile (Dim): F_{st}'s range from 0.38 to 0.63
- Maïdo (Mai): F_{st}'s range from 0.19 to 0.58

PHELSUMA BORBONICA — PHYLOGEOGRAPHY

PHELSUMA BORBONICA — EFFECTIVE POPULATION SIZES

Station	N_e (overall) $^{ m d}$
Aff	168 [1.0-587]
BB	136 [0.6-477]
BBC	63 [2.6-662]
BC	120 [0.7-467]
BF	277 [13.1-842]
BV	125 [1.4-396]
Cas	106 [12.8-329]
Cim	77 [0.0-276]
Dim	22 [0.5-79]
Dio	189 [19.9-562]
Ed	219 [6.0-40997]
Esp	140 [0.1-567]
GE	109 [0.0-407]
Mai	59 [0.0-178]
PJ	122 [13.1-342]
PP	124 [13.8-396]
Rad	140 [0.1-500]
Tak	105 [0.0-377]
Tre	110 [0.0-358]

PHELSUMA BORBONICA — CONCLUSIONS

- Long-lasting isolation of populations (especially montane populations)
- Small effective sizes (especially for montane populations)
 - **Take account of evolutionary history** in conservation practices (various ESUs)
 - Especially for montane populations

CO-PHYLOGENY

_

A LIKELIHOOD-BASED APPROACH

Josselin Cornuault, Rampal Etienne

Lab GELIFES (Univ. Groningen)

CO-PHYLOGENY — EVENTS

CO-PHYLOGENY — RECONCILIATION ANALYSIS

Most parsimonious reconciliation(s):

- No quantification of uncertainty
- No hypothesis testing

CO-PHYLOGENY — LIKELIHOOD-BASED ANALYSIS

Tanglegram (T)

Parameters:

$$\theta = \{d, s, l\}$$

d = duplication rate

s = host-switch rate

l = loss rate

Reconciliations

CO-PHYLOGENY — LIKELIHOOD-BASED ANALYSIS

Tanglegram (T)

$$P(T|\theta) = \sum_{i} P(T \mid R_{i}, \theta)$$
Reconciliations are marginalized out

Parameters:

 $\theta = \{d, s, l\}$

d = duplication rate

s = host-switch rate

l = loss rate

Marginal likelihood approach:

- Focus on estimating evolutionary rates (not reconciliations)
- Uncertainty quantified
- Hypothesis testing possible
- Multiple hosts per parasites and multiple parasites per hosts
- Current drawbacks:
 - Co-speciation not included
 - Hardly computable for more than 10 hosts

STRUCTURED COALESCENT

Josselin Cornuault, Antonia Salces Castellano, Brent Emerson, Isabel Sanmartin

Real jardin Botanico – CSIC – Madrid Island Ecology and Evolution – IPNA/CSIC – Tenerife

STRUCTURED COALESCENT — GENERALITIES

Coalescent model extended to multiple populations:

- Own effective population sizes (θ_A , θ_B ...)
- Migration rates $(M_{AB}, M_{BC} ...)$

STRUCTURED COALESCENT — CANARY ISLANDS

Genetic data for 200 Coleopteran species

Estimate migration rates among islands for each species

Determine main migration routes

STRUCTURED COALESCENT — NONSENSICAL RESULTS

STRUCTURED COALESCENT — NONSENSICAL RESULTS

LOWER θ_{EH} (**El Hierro** population size)

STRUCTURED COALESCENT — FUTURE WORK

Multimodal likelihood function (as many modes as there are populations)

- Possible to get the MCMC to get stuck in any of the following modes:
 - 1) <u>El Hierro (EH) mode</u>: Ancestral locations = EH, low population size for EH, EH source of migration
 - 2) La Gomera (LG) mode: Ancestral locations = LG, low population size for LG, LG source of migration
 - **3)** Tenerife mode: idem
 - 4) La Palma mode: idem

What type of datasets is more prone to the problem?

Can the problem be solved by using appropriate priors?

Is the model mathematically correctly defined?

PHYLODYNAMICS

PHYLOGENETIC EPIDEMIOLOGY

Josselin Cornuault, Fabio Pardi, Celine Scornavacca

- 1) Birth-Death-Sampling (BDS) model
- 2) Kingman coalescent model
 - a) Skyline approach
 - b) Mechanistic approach

1) Birth-Death-Sampling (BDS) model

1) Birth-Death-Sampling (BDS) model

Parameters:

- $\lambda(t)$ (transmission rate)
- $\mu(t)$ (loss rate)
- $\psi(t)$ (sampling rate)

1) Birth-Death-Sampling (BDS) model

Transmissions occur at rate $\lambda(t)$

Parameters:

- $\lambda(t)$ (transmission rate)
- $\mu(t)$ (loss rate)
- $\psi(t)$ (sampling rate)

1) Birth-Death-Sampling (BDS) model

Transmissions occur at rate $\lambda(t)$

Parameters:

- $\lambda(t)$ (transmission rate)
- $\mu(t)$ (loss rate)
- $\psi(t)$ (sampling rate)

Infections are lost at rate $\mu(t)$

1) Birth-Death-Sampling (BDS) model

Transmissions occur at rate $\lambda(t)$

Complete transmission tree

Parameters:

- $\lambda(t)$ (transmission rate)
- $\mu(t)$ (loss rate)
- $\psi(t)$ (sampling rate)

Infections are lost at rate $\mu(t)$

1) Birth-Death-Sampling (BDS) model

Transmissions occur at rate $\lambda(t)$

Complete transmission tree

Sampling events occur at rate $\psi(t)$

Parameters:

- $\lambda(t)$ (transmission rate)
- $\mu(t)$ (loss rate)
- $\psi(t)$ (sampling rate)

Infections are lost at rate $\mu(t)$

1) Birth-Death-Sampling (BDS) model

Transmissions occur at rate $\lambda(t)$

Complete transmission tree

Sampling events occur at rate $\psi(t)$

Parameters:

- $\lambda(t)$ (transmission rate)
- $\mu(t)$ (loss rate)
- $\psi(t)$ (sampling rate)

Infections are lost at rate $\mu(t)$

1) Birth-Death-Sampling (BDS) model

Transmissions occur at rate $\lambda(t)$

Complete transmission tree

Parameters:

- $\lambda(t)$ (transmission rate)
- $\mu(t)$ (loss rate)
- $\psi(t)$ (sampling rate)

Infections are lost at rate $\mu(t)$

Sampled transmission tree

Sampling events occur at rate $\psi(t)$

1) Birth-Death-Sampling (BDS) model

Advantages

1) Birth-Death-Sampling (BDS) model

Advantages

• Interesting epidemiological parameters can be estimated:

1) Birth-Death-Sampling (BDS) model

Advantages

• Interesting epidemiological parameters can be estimated:

Drawbacks

• Sampling procedure needs be assumed $(\psi(t))$

1) Birth-Death-Sampling (BDS) model

Advantages

 Interesting epidemiological parameters can be estimated:

Drawbacks

- Sampling procedure needs be assumed $(\psi(t))$
- Parameters are not identifiable

Fundamental Identifiability Limits in Molecular Epidemiology

Stilianos Louca $^{\circ}$, *,1,2 Angela McLaughlin, 3,4 Ailene MacPherson, 5,6,7 Jeffrey B. Joy, 3,4,8 and Matthew W. Pennell*,5,6

1) Birth-Death-Sampling (BDS) model

BDS inference with **correct** $\psi(t)$

Simulation: $\psi(t) = \psi$ Inference: $\psi(t) = \psi$

1) Birth-Death-Sampling (BDS) model

BDS inference with **correct** $\psi(t)$

Simulation: $\psi(t) = \psi$ Inference: $\psi(t) = \psi$

BDS inference with **incorrect** $\psi(t)$

Simulation: $\psi(t) \neq \psi$ Inference: $\psi(t) = \psi$ سر True curve

Estimated curve

Distribution of coalescent times

2) Kingman Coalescent (KC) model

2) Kingman Coalescent (KC) model

Parameters:

- $\theta(t)$ (instantaneous effective population size)

2) Kingman Coalescent (KC) model

Parameters:

- $\theta(t)$ (instantaneous effective population size)

Complete transmission tree

 Few assumptions about the model that generated the complete transmisison tree

2) Kingman Coalescent (KC) model

Parameters:

- $\theta(t)$ (instantaneous effective population size)

Complete transmission tree

- Few assumptions about the model that generated the complete transmission tree
- No assumptions about the sampling procedure

2) Kingman Coalescent (KC) model

Parameters:

- $\theta(t)$ (instantaneous effective population size)

Complete transmission tree

- Few assumptions about the model that generated the complete transmisison tree
- No assumptions about the sampling procedure

Coalescence of two lineages occurs at rate $\frac{1}{\theta(t)}$

2) Kingman Coalescent (KC) model

Parameters:

- $\theta(t)$ (instantaneous effective population size)

Complete transmission tree

- Few assumptions about the model that generated the complete transmisison tree
- No assumptions about the sampling procedure

Coalescence of two lineages occurs at rate $\frac{1}{\theta(t)}$

Two approaches for parametrizing heta(t): $\left\{egin{array}{l} ext{Skyline approach} \\ ext{Mechanistic approach} \end{array}
ight.$

2) Kingman Coalescent (KC) model

a) Skyline approach

heta(t) is represented phenomenologically by a piecewise function

2) Kingman Coalescent (KC) model

a) Skyline approach

heta(t) is represented phenomenologically by a piecewise function

Advantages

2) Kingman Coalescent (KC) model

a) Skyline approach

 $\theta(t)$ is represented phenomenologically by a piecewise function

Advantages

Drawbacks

 No assumption on the sampling procedure (the KC conditions on sampling times)

2) Kingman Coalescent (KC) model

a) Skyline approach

 $\theta(t)$ is represented phenomenologically by a piecewise function

Advantages

 No assumption on the sampling procedure (the KC conditions on sampling times)

- Interesting epidemiological parameters cannot be estimated:
 - $\rightarrow \lambda(t), \mu(t), N(t), R_e(t)$ are not parameters
 - \rightarrow $\theta(t)$ is not necessarily proportional to the prevalence N(t)

2) Kingman Coalescent (KC) model

a) Skyline approach

coalescent times

2) Kingman Coalescent (KC) model

b) Mechanistic approach

 $\theta(t) = k \ N(t)$ with N(t) the population size as predicted by an **epidemiological model**

2) Kingman Coalescent (KC) model

b) Mechanistic approach

Example: SIR epidemiological model

S(t) = # susceptible individuals

I(t) = # infected individuals

R(t) = # removed individuals (ie. immunised or dead)

2) Kingman Coalescent (KC) model

b) Mechanistic approach

Example: SIR epidemiological model

S(t) = # susceptible individuals

I(t) = # infected individuals

R(t) = # removed individuals (ie. immunised or dead)

$$I'(t) = \frac{\beta S(t)}{K} I(t) - \mu I(t)$$

$$S'(t) = -\frac{\beta S(t)}{K} I(t)$$

$$R'(t) = -\mu I(t)$$

2) Kingman Coalescent (KC) model

b) Mechanistic approach

Example: SIR epidemiological model

S(t) = # susceptible individuals

I(t) = # infected individuals

R(t) = # removed individuals (ie. immunised or dead)

$$I'(t) = \frac{\beta S(t)}{K} I(t) - \mu I(t)$$

$$S'(t) = -\frac{\beta S(t)}{K} I(t)$$

$$R'(t) = -\mu I(t)$$
Solving
time

2) Kingman Coalescent (KC) model

b) Mechanistic approach

Example: SIR epidemiological model

S(t) = # susceptible individuals

I(t) = # infected individuals

R(t) = # removed individuals (ie. immunised or dead)

$$I'(t) = \frac{\beta S(t)}{K} I(t) - \mu I(t)$$

$$S'(t) = -\frac{\beta S(t)}{K} I(t)$$

$$R'(t) = -\mu I(t)$$
Parametrizing the KC
$$\theta(t) = k I(t)$$
time

2) Kingman Coalescent (KC) model

b) Mechanistic approach

Advantages

2) Kingman Coalescent (KC) model

b) Mechanistic approach

Advantages

 No assumption on the sampling procedure (the KC conditions on sampling times)

2) Kingman Coalescent (KC) model

b) Mechanistic approach

Advantages

- No assumption on the sampling procedure (the KC conditions on sampling times)
- Interesting epidemiological parameters may be estimated

2) Kingman Coalescent (KC) model

b) Mechanistic approach

Advantages

- No assumption on the sampling procedure (the KC conditions on sampling times)
- Interesting epidemiological parameters may be estimated

Drawbacks

• $\theta(t)$ is not necessarily proportional to the prevalence N(t)

2) Kingman Coalescent (KC) model

b) Mechanistic approach

Advantages

- No assumption on the sampling procedure (the KC conditions on sampling times)
- Interesting epidemiological parameters may be estimated

- $\theta(t)$ is not necessarily proportional to the prevalence N(t)
- Sensitive to model choice

2) Kingman Coalescent (KC) model

b) Mechanistic approach

Mechanistic KC inference with **incorrect** model

Simulation: SIS model (N(t) reaches a plateau)

Inference: SIR model (N(t) reaches a maximum and decreases)

PHYLODYNAMICS – A NEW METHOD

Advantages

PHYLODYNAMICS — A NEW METHOD

Advantages

 No assumption on the sampling procedure (based on the KC)

PHYLODYNAMICS — A NEW METHOD

Advantages

- No assumption on the sampling procedure (based on the KC)
- No need to specify the model that generated the transmission tree

PHYLODYNAMICS – A NEW METHOD

Advantages

- No assumption on the sampling procedure (based on the KC)
- No need to specify the model that generated the transmission tree
- Interesting epidemiological parameters can be estimated

PHYLODYNAMICS – A NEW METHOD

Advantages

- No assumption on the sampling procedure (based on the KC)
- No need to specify the model that generated the transmission tree
- Interesting epidemiological parameters can be estimated

- The sampled tree is not enough information to identify the parameters
 - Requires <u>auxilliary data</u>

1) Mathematical foundation

Assumptions:

• The epidemic unraveled according to a **BD-type model** (ie. multiple simultaneous births are not allowed)

1) Mathematical foundation

Assumptions:

- The epidemic unraveled according to a BD-type model (ie. multiple simultaneous births are not allowed)
- Individuals are **exchangeable** (same transmission/recovery rates for all individuals and no geographic structure)

Allowed Not allowed

1) Mathematical foundation

Assumptions:

- The epidemic unraveled according to a BD-type model (ie. multiple simultaneous births are not allowed)
- Individuals are **exchangeable** (same transmission/recovery rates for all individuals and no geographic structure)

Allowed Not allowed

Result:

In the limit of large population size, the probability distribution of the sampled tree under a BD-type model converges to that of a Kingman coalescent with parameter

$$\theta(t) = \frac{N(t)}{2\lambda(t)}$$

1) Mathematical foundation

Assumptions:

- The epidemic unraveled according to a BD-type model (ie. multiple simultaneous births are not allowed)
- Individuals are exchangeable (same transmission/recovery rates for all individuals and no geographic structure)

Allowed Not allowed

Result:

In the limit of large population size, the probability distribution of the sampled tree under a BD-type model converges to that of a Kingman coalescent with parameter

$$\theta(t) = \frac{N(t)}{2\lambda(t)} = \frac{N_0 \exp \int_0^t (\mu(s) - \lambda(s)) ds}{2\lambda(t)}$$

1) Mathematical foundation

Assumptions:

- The epidemic unraveled according to a BD-type model (ie. multiple simultaneous births are not allowed)
- Individuals are exchangeable (same transmission/recovery rates for all individuals and no geographic structure)

Allowed Not allowed

Result:

In the limit of large population size, the probability distribution of the sampled tree under a BD-type model converges to that of a Kingman coalescent with parameter

$$\theta(t) = \frac{N(t)}{2\lambda(t)} = \frac{N_0 \exp \int_0^t (\mu(s) - \lambda(s)) ds}{2\lambda(t)}$$

 \rightarrow

The three parameters $\lambda(t)$, $\mu(t)$ and N_0 are not separately identifiable

1) Mathematical foundation

Assumptions:

- The epidemic unraveled according to a BD-type model (ie. multiple simultaneous births are not allowed)
- Individuals are **exchangeable** (same transmission/recovery rates for all individuals and no geographic structure)

Allowed Not allowed

Result:

In the limit of large population size, the probability distribution of the sampled tree under a BD-type model converges to that of a Kingman coalescent with parameter

$$\theta(t) = \frac{N(t)}{2\lambda(t)} = \frac{N_0 \exp \int_0^t (\mu(s) - \lambda(s)) ds}{2\lambda(t)}$$

The three parameters $\lambda(t)$, $\mu(t)$ and N_0 are not separately identifiable

2) Statistical inference

- Deterministic relationship
- - ► Random relationship

2) Statistical inference

2) Statistical inference

3) Comparison with other methods

3) Comparison with other methods

3) Comparison with other methods

4) Test of the method a) With various types of auxilliary data

Transmission chains

Time of recovery unknown but

4) Test of the method a) With various types of auxilliary data

Transmission chains

Time of primary infection Secondary infection times $\lambda(t) \\ \mu(t)$

Time of recovery unknown but

after last secondary infection

Duration of infection

4) Test of the method a) With various types of auxilliary data

Transmission chains

Time of recovery unknown but

• Duration of infection

Incidence of recovery

4) Test of the method a) With various types of auxilliary data

Transmission chains

Time of recovery unknown but

Duration of infection

Incidence of recovery

Incidence of new cases

time 1
$$\longrightarrow$$
 time 2 \longrightarrow $\lambda(t) \times N(t)$

4) Test of the method a) With various types of auxilliary data

Transmission chains

Time of recovery unknown but

Duration of infection

Incidence of recovery

Incidence of new cases

time 1
$$\longrightarrow$$
 time 2 \longrightarrow $\lambda(t) \times N(t)$

Prevalence

4) Test of the method

a) With various types of auxilliary data

4) Test of the methodb) With structured models

- Geographic structure
- Different types of individuals (multi-stage infections)
- Different variants

THANK YOU FOR YOUR ATTENTION