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HEMOSPORIDIAN PARASITES
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HEMOSPORIDIAN PARASITES — GENERALITIES
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HEMOSPORIDIAN PARASITES — DIVERISTY IN THE MIASCARENES

Leucocytozoon Plasmodium

26 lineages > 10 lineages

Proximal determinants of diversity:

. Number of colonizations

. Colonization time

. Diversification rate



HEMOSPORIDIAN PARASITES — DIVERISTY IN THE MIASCARENES

Leucocytozoon Plasmodium
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HEMOSPORIDIAN PARASITES — DIVERISTY IN THE MIASCARENES

Leucocytozoon Plasmodium
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PHELSUMA BORBONICA — GENERALITIES

* Almost endemic to Reunion island
 Endangered species (IUCN)

e Human-altered habitat

 Geographically-structured
color variation




PHELSUMA BORBONICA — GENERALITIES

* Almost endemic to Reunion island
 Endangered species (IUCN)

e Human-altered habitat

 Geographically-structured
color variation

!

Genetic structure ?

Different evolutionary significant units ?
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PHELSUMA BORBONICA — MICROSATELLITE STRUCTURE
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PHELSUMA BORBONICA — MICROSATELLITE STRUCTURE
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cluster

e Location type High F.’s for some populations:
s O Only yellow haplotypes

@ Only blue haplotypes

@ Both yellow and blue haplotypes

Muclear sdmixture proportion {mean posteriorn)
LR

* Dimitile (Dim): F,’s range from 0.38 to 0.63
* Maido (Mai): F’s range from 0.19 to 0.58



PHELSUMA BORBONICA — PHYLOGEOGRAPHY

Location type

O Only yellow haplotypes
@® Only blue haplotypes
@ Both yellow and blue haplotypes

mmsssssmm) Range expansion
) Gene flow



PHELSUMA BORBONICA — EFFECTIVE POPULATION SIZES

Station
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PHELSUMA BORBONICA — CONCLUSIONS

* Long-lasting isolation of populations (especially montane populations)

* Small effective sizes (especially for montane populations)

mm) Take account of evolutionary history in conservation practices (various ESUs)

mm) Especially for montane populations
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CO-PHYLOGENY — RECONCILIATION ANALYSIS

Reconciliation
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Most parsimonious reconciliation(s):
* No quantification of uncertainty
* No hypothesis testing

Herrera et al. (2016) Ecol. Evol. 6:1504-1514



CO-PHYLOGENY — LIKELIHOOD-BASED ANALYSIS

Tanglegram (T)

Cosmospora

P(T | Ry,0)

Reconciliations

A

P(T | Ry, 6)

Parameters:
0 ={d,s, !}

d = duplication rate

s = host-switch rate
[ = loss rate




CO-PHYLOGENY — LIKELIHOOD-BASED ANALYSIS

Tanglegram (T)

Parameters:
P(T|0) = z P(T | R,, 6) 6 =1{d,s 1}
< : d = duplication rate
Reconciliations are s = host-switch rate
marginalized out [ = loss rate

Marginal likelihood approach:

Focus on estimating evolutionary rates (not reconciliations)
Uncertainty quantified
Hypothesis testing possible
Multiple hosts per parasites and multiple parasites per hosts
Current drawbacks:

- Co-speciation not included

- Hardly computable for more than 10 hosts
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STRUCTURED COALESCENT — GENERALITIES

BB Coalescent model extended to multiple populations:
* Own effective population sizes (8,4, 05 ...)
* Migration rates (My5, Mg ...)
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STRUCTURED COALESCENT — CANARY ISLANDS

L Tenerife (TF) Genetic data for 200 Coleopteran species
(LP) mm) Estimate migration rates among islands for each
' ' ! species

mm) Determine main migration routes
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STRUCTURED COALESCENT — NONSENSICAL RESULTS
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STRUCTURED COALESCENT — FUTURE WORK

Multimodal likelihood function (as many modes as there are populations)

mm) Possible to get the MCMC to get stuck in any of the following modes:
1) El Hierro (EH) mode: Ancestral locations = EH, low population size for EH, EH source of migration
2) La Gomera (LG) mode: Ancestral locations = LG, low population size for LG, LG source of migration
3) Tenerife mode: idem
4) La Palma mode: idem

What type of datasets is more prone to the problem?

Can the problem be solved by using appropriate priors?

Is the model mathematically correctly defined?
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PHYLODYNAMICS — CLASSICAL MODELS

1) Birth-Death-Sampling (BDS) model

2) Kingman coalescent model
a) Skyline approach
b) Mechanistic approach
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PHYLODYNAMICS — CLASSICAL MODELS Parameters:
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PHYLODYNAMICS — CLASSICAL MODELS
1) Birth-Death-Sampling (BDS) model

Transmissions occur at rate A(t)

Marie

Hector ® - Transmission from
Hector to Marie
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Parameters:

A(t) (transmission rate)
u(t) (loss rate)
Y(t) (sampling rate)
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PHYLODYNAMICS — CLASSICAL MODELS Parameters:
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PHYLODYNAMICS — CLASSICAL MODELS Parameters:
- A(t) (transmission rate)

1) Birth-Death-Sampling (BDS) model ~ D) (loss rate)
- Y(t) (sampling rate)
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PHYLODYNAMICS — CLASSICAL MODELS
1) Birth-Death-Sampling (BDS) model

Transmissions occur at rate A(t)

Marie
Hector ® - Transmission from
Hector to Marie
Hector

Complete transmission tree

Marie

Marie Marie Marc Noé
0é

—. ﬁ—- Noé

Hectﬂ. l Jean Z0é
I ‘ . . Zoé Ivan
Hector Jean Tim
Sampling event Paul Ll pau|

Sampling events occur at rate ¥(t)

Parameters:

- A(t) (transmission rate)
- u(t) (loss rate)
- Y(t) (sampling rate)

Infections are lost at rate u(t)

Marie

Hector

—9

Hector -y End of Hector’s infection
) (ie. Hector recovered or died)




PHYLODYNAMICS — CLASSICAL MODELS
1) Birth-Death-Sampling (BDS) model

Transmissions occur at rate A(t)

Marie

Hector ® - Transmission from
Hector to Marie
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Complete transmission tree
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Parameters:

- A(t) (transmission rate)
- u(t) (loss rate)
- Y(t) (sampling rate)

Infections are lost at rate u(t)
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Sampled transmission tree
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PHYLODYNAMICS — CLASSICAL MODELS
1) Birth-Death-Sampling (BDS) model

Advantages

Drawbacks
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1) Birth-Death-Sampling (BDS) model

Advantages

* Interesting epidemiological parameters

can be estimated:
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1) Birth-Death-Sampling (BDS) model

Advantages

* Interesting epidemiological parameters

can be estimated:
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PHYLODYNAMICS — CLASSICAL MODELS
1) Birth-Death-Sampling (BDS) model

Advantages Drawbacks
* Interesting epidemiological parameters e Sampling procedure needs be
can be estimated: assumed (Y (t))
Transmission rate Loss rate * Parameters are not identifiable
20 u(e)

Fundamental Identifiability Limits in Molecular Epidemiology

Stilianos Louca @,"* Angela McLaughlin,** Ailene MacPherson,>®” Jeffrey B. Joy,**® and
Matthew W. Pennell*>®

time time >
454  ooe-al .
g 4 - : AN “‘
Prevalence Reproduction number 535477 RN
- P |
N(t Re(Q E 22 ] P
2 24
1 5 1.5 -
-E q e by
> > 2 0.5 -
time time 0 . . .
15 10 5 0

Time before present (years)



PHYLODYNAMICS — CLASSICAL MODELS
1) Birth-Death-Sampling (BDS) model

BDS inference with correct 1 (t)

' W True curve
1500 4 \

—

~——_"_ Estimated curve

Distribution of
coalescent times

Time before present

Simulation: Y(t) =y
Inference: Y(t) =y



PHYLODYNAMICS — CLASSICAL MODELS

1) Birth-Death-Sampling (BDS) model

BDS inference with correct 1 (t) BDS inference with incorrect 1 (t)

W True curve

1

|

I

1500 !
]

\

—

~——_"_ Estimated curve

1000 1

N(t)

Distribution of

coalescent times
500 -

s 0-
25 5.0 7

. 0.0 25
Time before present

5.0
Time before present
Simulation: Y(t) = Y Simulation: Y(t) # ¢
Inference: Y(t) =y

Inference: Y(t) =y



PHYLODYNAMICS — CLASSICAL MODELS

2) Kingman Coalescent (KC) model
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2) Kingman Coalescent (KC) model

Parameters:

- 6(t) (instantaneous effective population size)
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2) Kingman Coalescent (KC) model

Parameters:

- 6(t) (instantaneous effective population size)

Complete transmission tree
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Few assumptions about the model that generated the
complete transmisison tree



PHYLODYNAMICS — CLASSICAL MODELS
2) Kingman Coalescent (KC) model

Parameters:

- 6(t) (instantaneous effective population size)

Complete transmission tree
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Marie
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.% Zoé lvan

Hector ® gan Tim

Paul Paul

Few assumptions about the model that generated the
complete transmisison tree

No assumptions about the sampling procedure



PHYLODYNAMICS — CLASSICAL MODELS
2) Kingman Coalescent (KC) model

Parameters:

- 6(t) (instantaneous effective population size)

Complete transmission tree
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PHYLODYNAMICS — CLASSICAL MODELS
2) Kingman Coalescent (KC) model

Parameters:

- 6(t) (instantaneous effective population size)

Complete transmission tree

. Isa
Marie

Marc

Few assumptions about the model that generated the

Marie Marie ] Noé . .
Hector P @ = o Nog complete transmisison tree
. . Zoé lvan . .
Hectd ] Jean * No assumptions about the sampling procedure
Tim
Paul Paul
.“ Coalescence of two lineages occurs at rate m

‘ Two approaches for parametrizing 6 (t):

Skyline approach

Mechanistic approach
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2) Kingman Coalescent (KC) model
a) Skyline approach 0(t)

6(t) is represented

f phenomenologically by a

piecewise function

time
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2) Kingman Coalescent (KC) model

a) Skyline approach

0(t) .

N el

Advantages

time

6(t) is represented
phenomenologically by a
piecewise function

Drawbacks
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2) Kingman Coalescent (KC) model
a) Skyline approach 0(t)

6(t) is represented

f phenomenologically by a

piecewise function

time

Advantages Drawbacks

* No assumption on the sampling
procedure (the KC conditions on
sampling times)



PHYLODYNAMICS — CLASSICAL MODELS

2) Kingman Coalescent (KC) model

a) Skyline approach 0(t)
6(t) is represented
f phenomenologically by a
piecewise function
time
Advantages Drawbacks
* No assumption on the sampling * Interesting epidemiological parameters
procedure (the KC conditions on cannot be estimated:

sampling times)
m A(t), u(t), N(t), R.(t) are not parameters

= (O (t) is not necessarily proportional to the
prevalence N(t)



PHYLODYNAMICS — CLASSICAL MODELS

2) Kingman Coalescent (KC) model
a) Skyline approach

Skyline KC inference when 6(t) is not propotional to N(t)

1500 -

i
i
i
\ - 1500
LY
\
A
1000 - R
L - 1000
A
—_ o
= ) -3
= =
\
I_r \
AY
500 SR \
, - . \ - 500
7’ \\ \
// ‘\\
// \\
s hY
’ b W
’ N,
0- )
0.0 2.5 5.0 75 10.0

Time before present

.\‘/‘M True N(t)
L|_|I|_ True 6(t)

—

~————__ Estimated 6(¢)

Distribution of
coalescent times



PHYLODYNAMICS — CLASSICAL MODELS

2) Kingman Coalescent (KC) model
b) Mechanistic approach

0(t).

O(t) = k N(t) with N(t) the population size as
predicted by an epidemiological model

time



PHYLODYNAMICS — CLASSICAL MODELS

2) Kingman Coalescent (KC) model
b) Mechanistic approach

Example: SIR epidemiological model

S(t) = # susceptible individuals

I(t) = # infected individuals

R(t) = # removed individuals (ie. immunised or dead)
K =S(t) + I(t) + R(t) = total population size (constant)
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2) Kingman Coalescent (KC) model
b) Mechanistic approach

Example: SIR epidemiological model

S(t) = # susceptible individuals

I(t) = # infected individuals

R(t) = # removed individuals (ie. immunised or dead)
K =S(t) + I(t) + R(t) = total population size (constant)

re =52 16 - 1w
s
S'(t) = —T 1(t)

R'(t) = —pI(¢)
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2) Kingman Coalescent (KC) model

b) Mechanistic approach

Example: SIR epidemiological model

S(t) = # susceptible individuals
I(t) = # infected individuals

R(t) = # removed individuals (ie. immunised or dead)
K =S(t) + I(t) + R(t) = total population size (constant)

S
re =52 16 - 1w

S'(t) = —ﬁST(t) 1(t)

R'(t) = —pI(¢)

’

Solving

—

I(t)(= N())

time
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2) Kingman Coalescent (KC) model

b) Mechanistic approach

Example: SIR epidemiological model

S(t) = # susceptible individuals
I(t) = # infected individuals

R(t) = # removed individuals (ie. immunised or dead)
K =S(t) + I(t) + R(t) = total population size (constant)

S
re =52 16 - 1w

S'(t) = —ﬁST(t) 1(t)

R'(t) = —pI(¢)

’

Solving

—

I(t)(= N())

Parametrizing

the KC
meeessssss——) () = k [(t)

time



PHYLODYNAMICS — CLASSICAL MODELS

2) Kingman Coalescent (KC) model
b) Mechanistic approach

Advantages

Drawbacks
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2) Kingman Coalescent (KC) model
b) Mechanistic approach
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Drawbacks

* No assumption on the sampling
procedure (the KC conditions on
sampling times)
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2) Kingman Coalescent (KC) model
b) Mechanistic approach

Advantages Drawbacks

* No assumption on the sampling
procedure (the KC conditions on
sampling times)

* Interesting epidemiological parameters
may be estimated
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2) Kingman Coalescent (KC) model
b) Mechanistic approach

Advantages Drawbacks
* No assumption on the sampling * O(t) is not necessarily proportional to
procedure (the KC conditions on the prevalence N(t)

sampling times)

* Interesting epidemiological parameters
may be estimated



PHYLODYNAMICS — CLASSICAL MODELS

2) Kingman Coalescent (KC) model
b) Mechanistic approach

Advantages

Drawbacks

* No assumption on the sampling
procedure (the KC conditions on
sampling times)

* Interesting epidemiological parameters
may be estimated

6(t) is not necessarily proportional to
the prevalence N(t)

Sensitive to model choice




PHYLODYNAMICS — CLASSICAL MODELS

2) Kingman Coalescent (KC) model
b) Mechanistic approach

Mechanistic KC inference with incorrect model

900 1

wf"‘%\ True N(t)
L|_|I|_ True 6(t)
20

Estimated N(t)
(relative)

< 6001

(1o

- 10
300 1

Distribution of
coalescent times

0.0

25 5.0 7.5
Time before present

Simulation: SIS model (N(t) reaches a plateau)

Inference: SIR model (N(t) reaches a maximum and decreases)
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generated the transmission tree
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PHYLODYNAMICS — A NEW METHOD

Advantages

Drawbacks

* No assumption on the sampling
procedure (based on the KC)

* No need to specify the model that
generated the transmission tree

* Interesting epidemiological parameters
can be estimated

The sampled tree is not enough
information to identify the parameters

mm) Requires auxilliary data
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1) Mathematical foundation

Assumptions:

Allowed Not allowed

* The epidemic unraveled according to a BD-type model (ie. _E _E

multiple simultaneous births are not allowed)
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Individuals are exchangeable (same transmission/recovery rates
for all individuals and no geographic structure)



PHYLODYNAMICS — A NEW METHOD

1) Mathematical foundation

Assumptions:

Allowed Not allowed
The epidemic unraveled according to a BD-type model (ie.

multiple simultaneous births are not allowed) _E _E

Individuals are exchangeable (same transmission/recovery rates
for all individuals and no geographic structure)

Result:

In the limit of large population size, the probability distribution of the sampled tree under a
BD-type model converges to that of a Kingman coalescent with parameter

N(t)
o(t) = m



PHYLODYNAMICS — A NEW METHOD

1) Mathematical foundation

Assumptions:

Allowed Not allowed
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Assumptions:

Allowed Not allowed
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multiple simultaneous births are not allowed)
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4) Test of the method

a) With various types of auxilliary data
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4) Test of the method

b) With structured models
* Geographic structure
» Different types of individuals (multi-stage infections)

e Different variants






