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Leucocytozoon Plasmodium

10 lineages26 lineages >

• Diversification rate

• Colonization time

• Number of colonizations

Proximal determinants of diversity:



Leucocytozoon Plasmodium

11 colonizations 6 colonizations>
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Leucocytozoon Plasmodium

Colonization # + -
Colonization
times + -

Diversification 
rate = =

Greater diversity in Leucocytozoon
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• Human-altered habitat

• Geographically-structured
color variation
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• Almost endemic to Reunion island

• Endangered species (IUCN)

• Human-altered habitat

• Geographically-structured
color variation

Genetic structure ? 

Different evolutionary significant units ?



PHELSUMA BORBONICA – MTDNA STRUCTURE

mtDNA phylogeny
(Cytb & 16S)
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PHELSUMA BORBONICA – MICROSATELLITE STRUCTURE

High Fst’s for some populations:

• Dimitile (Dim): Fst’s range from 0.38 to 0.63

• Maïdo (Mai): Fst’s range from 0.19 to 0.58



PHELSUMA BORBONICA – PHYLOGEOGRAPHY

Range expansion

Gene flow



PHELSUMA BORBONICA – EFFECTIVE POPULATION SIZES



PHELSUMA BORBONICA – CONCLUSIONS

• Long-lasting isolation of populations (especially montane populations)

• Small effective sizes (especially for montane populations)

Take account of evolutionary history in conservation practices (various ESUs) 

Especially for montane populations
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CO-PHYLOGENY – EVENTS

Cospeciation Duplication

Host switchLoss

Host

Parasite



Tanglegram Reconciliation

CO-PHYLOGENY – RECONCILIATION ANALYSIS

Maximum 
parsimony

Most parsimonious reconciliation(s):
• No quantification of uncertainty
• No hypothesis testing

Herrera et al. (2016) Ecol. Evol. 6:1504-1514



Tanglegram (𝑇)
Reconciliations

CO-PHYLOGENY – LIKELIHOOD-BASED ANALYSIS

𝑃 𝑇 𝑅1, 𝜃)
𝑅1

𝑅2

𝑃 𝑇 𝑅2, 𝜃)

𝜃 = 𝑑, 𝑠, 𝑙

𝑑 = duplication rate

𝑠 = host-switch rate

𝑙 = loss rate

Parameters:



Tanglegram (𝑇)

𝑃 𝑇 𝜃 =

𝑖

𝑃 𝑇 𝑅𝑖 , 𝜃) 𝜃 = 𝑑, 𝑠, 𝑙

𝑑 = duplication rate

𝑠 = host-switch rate

𝑙 = loss rate

Parameters:

Reconciliations are 
marginalized out

Marginal likelihood approach:
• Focus on estimating evolutionary rates (not reconciliations)
• Uncertainty quantified
• Hypothesis testing possible
• Multiple hosts per parasites and multiple parasites per hosts
• Current drawbacks:

- Co-speciation not included
- Hardly computable for more than 10 hosts

CO-PHYLOGENY – LIKELIHOOD-BASED ANALYSIS



STRUCTURED COALESCENT

Toulouse

Real jardin Botanico – CSIC – Madrid 
Island Ecology and Evolution – IPNA/CSIC – Tenerife

Groningen (NL)

Madrid

Tenerife

Canary Islands

Josselin Cornuault, Antonia Salces Castellano, Brent Emerson, Isabel Sanmartin



STRUCTURED COALESCENT – GENERALITIES

𝜽𝑨

𝜽𝑩

𝜽𝑪

𝑀𝐴𝐵

𝑀𝐵𝐴

𝑀𝐴𝐶

𝑀𝐶𝐴

𝑀𝐵𝐶 𝑀𝐶𝐵

Coalescent model extended to multiple populations:
• Own effective population sizes (𝜃𝐴, 𝜃𝐵…)
• Migration rates (𝑀𝐴𝐵 , 𝑀𝐵𝐶 …)



STRUCTURED COALESCENT – CANARY ISLANDS

Genetic data for 200 Coleopteran species

Estimate migration rates among islands for each
species

Determine main migration routes



Ancestral states:

El Hierro

Megarthrus sp

LOW migration 
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𝜽𝑬𝑯 𝜽𝑳𝑮 𝜽𝑳𝑷 𝜽𝑻𝑭

Ancestral states:

El Hierro

Megarthrus sp

LOWER 𝜽𝑬𝑯 (El Hierro population size) 
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STRUCTURED COALESCENT – FUTURE WORK

Is the model mathematically correctly defined?

Multimodal likelihood function (as many modes as there are populations)

Possible to get the MCMC to get stuck in any of the following modes:
1) El Hierro (EH) mode: Ancestral locations = EH, low population size for EH, EH source of migration 
2) La Gomera (LG) mode: Ancestral locations = LG, low population size for LG, LG source of migration
3) Tenerife mode: idem
4) La Palma mode: idem

Can the problem be solved by using appropriate priors?

What type of datasets is more prone to the problem?
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1) Birth-Death-Sampling (BDS) model

PHYLODYNAMICS – CLASSICAL MODELS

2) Kingman coalescent model

a) Skyline approach

b) Mechanistic approach
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- 𝜇(𝑡) (loss rate)
- 𝜓(𝑡) (sampling rate)
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Transmissions occur at rate 𝜆 𝑡
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Transmission from
Hector to Marie
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Transmissions occur at rate 𝜆 𝑡

Hector

Hector

Marie

Transmission from
Hector to Marie

Infections are lost at rate 𝜇 𝑡

End of Hector’s infection 
(ie. Hector recovered or died)

Hector

Hector

Marie
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Transmissions occur at rate 𝜆 𝑡
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Marie

Transmission from
Hector to Marie
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Complete transmission tree
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Transmissions occur at rate 𝜆 𝑡
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PHYLODYNAMICS – CLASSICAL MODELS

Transmissions occur at rate 𝜆 𝑡
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Sampling event

Sampling events occur at rate 𝜓 𝑡

Sampled transmission tree

Parameters:

- 𝜆(𝑡) (transmission rate)
- 𝜇(𝑡) (loss rate)
- 𝜓(𝑡) (sampling rate)
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• Interesting epidemiological parameters
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1) Birth-Death-Sampling (BDS) model

PHYLODYNAMICS – CLASSICAL MODELS

Advantages

• Interesting epidemiological parameters
can be estimated:

time

𝜆(𝑡)

time

𝜇(𝑡)

time

𝑁(𝑡)

time

𝑅𝑒(𝑡)

1

Transmission rate Loss rate

Prevalence Reproduction number

Drawbacks

• Sampling procedure needs be
assumed (𝜓 𝑡 ) 

• Parameters are not identifiable



1) Birth-Death-Sampling (BDS) model

PHYLODYNAMICS – CLASSICAL MODELS

Simulation: 𝜓 𝑡 = 𝜓
Inference:   𝜓 𝑡 = 𝜓

Time before present

True curve

Estimated curve

Distribution of 
coalescent times

BDS inference with correct 𝜓(𝑡)



1) Birth-Death-Sampling (BDS) model

PHYLODYNAMICS – CLASSICAL MODELS

Simulation: 𝜓 𝑡 = 𝜓
Inference:   𝜓 𝑡 = 𝜓

BDS inference with incorrect 𝜓(𝑡)BDS inference with correct 𝜓(𝑡)

Time before present Time before present

True curve

Estimated curve

Distribution of 
coalescent times

Simulation: 𝝍 𝒕 ≠ 𝝍
Inference:   𝜓 𝑡 = 𝜓



2) Kingman Coalescent (KC) model

PHYLODYNAMICS – CLASSICAL MODELS



2) Kingman Coalescent (KC) model

PHYLODYNAMICS – CLASSICAL MODELS

Parameters:

- 𝜃(𝑡) (instantaneous effective population size)
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Complete transmission tree

Parameters:

- 𝜃(𝑡) (instantaneous effective population size)

• Few assumptions about the model that generated the 
complete transmisison tree
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2) Kingman Coalescent (KC) model

PHYLODYNAMICS – CLASSICAL MODELS

Complete transmission tree

Coalescence of two lineages occurs at rate
1
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Parameters:

- 𝜃(𝑡) (instantaneous effective population size)

• Few assumptions about the model that generated the 
complete transmisison tree

• No assumptions about the sampling procedure

Two approaches for parametrizing 𝜃 𝑡 : 
Skyline approach

Mechanistic approach



2) Kingman Coalescent (KC) model
a) Skyline approach

PHYLODYNAMICS – CLASSICAL MODELS
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time

𝜃 𝑡 is represented
phenomenologically by a 
piecewise function
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2) Kingman Coalescent (KC) model
a) Skyline approach

PHYLODYNAMICS – CLASSICAL MODELS

𝜃(𝑡)

time

Advantages Drawbacks

• No assumption on the sampling 
procedure (the KC conditions on 
sampling times)

• Interesting epidemiological parameters
cannot be estimated:

𝜃 𝑡 is not necessarily proportional to the 
prevalence 𝑁 𝑡

𝜃 𝑡 is represented
phenomenologically by a 
piecewise function

𝜆 𝑡 , 𝜇 𝑡 , 𝑁 𝑡 , 𝑅𝑒 𝑡 are not parameters



2) Kingman Coalescent (KC) model
a) Skyline approach

PHYLODYNAMICS – CLASSICAL MODELS

Skyline KC inference when 𝜃(𝑡) is not propotional to 𝑁(𝑡)

True N(t)

Estimated 𝜃(𝑡)

Distribution of 
coalescent times

True 𝜃(𝑡)

Time before present



2) Kingman Coalescent (KC) model
b) Mechanistic approach

PHYLODYNAMICS – CLASSICAL MODELS

𝜃(𝑡)

time

𝜃 𝑡 = 𝑘 𝑁(𝑡) with 𝑁(𝑡) the population size as 
predicted by an epidemiological model 
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Example: SIR epidemiological model 
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I(t) = # infected individuals

R(t) = # removed individuals (ie. immunised or dead)

K = S(t) + I(t) + R(t) = total population size (constant)
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Example: SIR epidemiological model 

S(t) = # susceptible individuals

I(t) = # infected individuals

R(t) = # removed individuals (ie. immunised or dead)

𝑆′ 𝑡 = −
𝛽𝑆 𝑡

𝐾
𝐼 𝑡

𝐼′ 𝑡 =
𝛽𝑆 𝑡

𝐾
𝐼 𝑡 − 𝜇 𝐼(𝑡)

K = S(t) + I(t) + R(t) = total population size (constant)

𝑅′ 𝑡 = −𝜇 𝐼 𝑡

𝐼 𝑡 (= 𝑁 𝑡 )

Solving

time

𝜃 𝑡 = 𝑘 𝐼 𝑡

Parametrizing
the KC
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2) Kingman Coalescent (KC) model
b) Mechanistic approach

PHYLODYNAMICS – CLASSICAL MODELS

Advantages Drawbacks

• No assumption on the sampling 
procedure (the KC conditions on 
sampling times)

• Interesting epidemiological parameters
may be estimated

• 𝜃 𝑡 is not necessarily proportional to 
the prevalence 𝑁 𝑡

• Sensitive to model choice



2) Kingman Coalescent (KC) model
b) Mechanistic approach

PHYLODYNAMICS – CLASSICAL MODELS

Mechanistic KC inference with incorrect model

True N(t)

Estimated N(t) 
(relative)

Distribution of 
coalescent times

True 𝜃(𝑡)

Simulation: SIS model (N(t) reaches a plateau)
Inference:   SIR model (N(t) reaches a maximum and decreases)

Time before present
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PHYLODYNAMICS – A NEW METHOD

Advantages Drawbacks

• No assumption on the sampling 
procedure (based on the KC)

• Interesting epidemiological parameters
can be estimated

• The sampled tree is not enough
information to identify the parameters

Requires auxilliary data• No need to specify the model that
generated the transmission tree
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1) Mathematical foundation

Assumptions:

• The epidemic unraveled according to a BD-type model (ie. 
multiple simultaneous births are not allowed)   

Allowed Not allowed

• Individuals are exchangeable (same transmission/recovery rates 
for all individuals and no geographic structure) 

Result:

In the limit of large population size, the probability distribution of the sampled tree under a 
BD-type model converges to that of a Kingman coalescent with parameter

𝜃 𝑡 =
𝑁 𝑡

2𝜆(𝑡)
=
𝑁0 exp0

𝑡
𝜇 𝑠 − 𝜆 𝑠 𝑑𝑠

2𝜆(𝑡)
The three parameters 𝜆(𝑡), 𝜇(𝑡) and 𝑁0
are not separately identifiable

Auxilliary data required
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4) Test of the method
a) With various types of auxilliary data

time

Transmission 
chains

Incidence Prevalence

N(t)
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4) Test of the method
b) With structured models

• Geographic structure

• Different types of individuals (multi-stage infections)

• Different variants 
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