
Fur, J. and Sall, M. 
Using Flexible Time Scale to Explore the Validity of Agent-based Models of Ecosystem Dynamics: Application to Simulation of a Wild Rodent Population in a Changing Agricultural Landscape. 
DOI: 10.5220/0006912702970304 
In Proceedings of 8th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2018), pages 297-304 
ISBN: 978-989-758-323-0 
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved 

Using Flexible Time Scale to Explore the Validity of Agent-Based 
Models of Ecosystem Dynamics: Application to Simulation of a Wild 

Rodent Population in a Changing Agricultural Landscape 

Jean Le Fur1 and Moussa Sall2 
1Institut de Recherche pour le Développement (IRD), Centre de Biologie pour la Gestion des 

Populations (CBGP), Campus Baillarguet, CS 30016, F-34988 Montferrier-sur-Lez, France  
2Dépt. Informatique, Univ.G.Berger/Saint-Louis Sénégal and lab. IRD-BIOPASS, Campus Bel-Air, Dakar, Sénégal 

jean.lefur@ird.fr , sall.moussa@sanarsoft.com 

 

Keywords: Agent-Based Model, Time Scale, Rodent, Discrete Time Simulation, Sensitivity Analysis 

Abstract: Identifying parameters value is a major issue in model engineering. In discrete time agent-based models, 

time step is an important one as it determines the frequency at which agents realize their activity step. This 

parameter is commonly defined as a fixed constant during the model design stage. In particular cases, this 

may lead to biases as it may be sometimes difficult to determine if agents efficiently realize their activity 

step once each 1, 2 seconds, hour or the like. A simulation model of a rodent population has been used to 

study the effect of using a flexible time scale on its outcomes. Three types of processes have been 

considered as time dependent in the model, environment sensing, movement and life cycle (maturity, 

gestation…). A time step sensitivity analysis constitutes the principal result of this study. For the widest 

range of time step values, model’s behaviour is unrealistic and bound to algorithms artefacts. A very small 

range of time steps leads to simulation of a perennial rodents’ population. Biases bound to variable time step 

implementation are discussed. Using flexible time scale approach proved efficient to get insight into the 

model’s behaviour and fruitful clues to assess agents’ processes frequency in the actual ecosystem. 

1. INTRODUCTION 

Agent-based models are recognized as powerful 

approaches to formalize ecological processes 

(White, 2016; Fu and Hao, 2018). This formalism is 

widespread in social systems modelling (Squazzoni, 

2010), whether animal or specifically human 

systems, as it can make emerge organization patterns 

out of agents’ interaction (Whitley, 2016). As for 

other models, one important focus must be put in 

agent-based models on calibration of parameters 

used to describe the simulated populations (Stanilov, 

2011). Indeed, following Watts (2016), an agent-

based model whose parameters are not conveniently 

fitted may be useless, even with a good 

representation of its agents’ logic. 

Several directions are proposed in the literature 

to simulate agent-based models with a particular 

distinction between discrete time and discrete events 

simulation (Buss et al., 2010). Among these 

alternatives, discrete time simulations are widely 

used (Railsback et al., 2017) as they constitute a 

practical and easier to implement approach (Floudas 

et al., 2004) to formalize concrete systems, be them 

natural  (Singh et al, 2018), social  (Sauser et al., 

2018) or economical  (Ponomarenko et al., 2018). In 

discrete time simulations, agents are sequentially 

allowed to perform one cycle of activity each given 

time step. As a general rule, parameters calibrations 

are realized for a fixed time step uniformly 

incremented (Al Rowaei et al., 2011). Recent work 

on this question put forward the significant impact 

that using a fixed time step could have on the 

outcomes of such type of models (Buss and Rowaei, 

2010, Kuo, 2015). Indeed, one cycle usually implies 

agents’ decision processes about their environment 

such as perception-deliberation-execution in a PDE 

scheme (Ferber and Müller, 1996) or Belief-Desire-

Intention in a BDI scheme (Caillou et al., 2017). 

Whatever the scheme however, it is often difficult, if 

possible, to determine if one agent has to process the 

selected scheme once each second, two seconds, 

minute, hour, day or the like.  

In this study we are interested in configuring a 

classical agent-based model of a rodent population 

in the wild. The aim is to evaluate the optimal time 

step duration to fulfil the need of the model’s 

objective, that is to say, make evolve a perennial 

population in a changing landscape. Beyond the 

model design with its environment, agents’ 

behaviour, etc., we designed the model so as it could 

be run at various time scales in order to determine 
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the convenient time step necessary for this purpose 

and thereafter use the model accordingly. 

The article is first devoted to the presentation of 

the model and the approach used to implement a 

flexible time scale. The use case is then described 

along with the simulation protocol and its associated 

time-scale sensitivity analysis. The results section 

presents the outcomes of the model for a range of 

time steps used. Results and the method used to 

formalize time scale changes are then discussed 

before concluding on perspectives and possible 

improvements. 

2. MODEL AND USE CASE 

DESCRIPTION 

2.1 General Model Overview 

The general model used is described in Le Fur et 

al. (2017). It is coded in Java using the Repast 

Simphony Platform (North et al., 2005). It is a 

combination of three connected class hierarchies; 

one for substrates at different spatial aggregation 

levels, one for genes and genomes that define 

agents’ life traits (age at maturity, gestation length, 

max age, …) and one to describe agents’ behaviours; 

the latter being a compound of moving, reproduction 

and social behaviours mechanisms.  

The model is implemented using the so-called 

‘mechanistically rich’ approach (De Angelis and 

Mooij, 2003, Topping et al., 2010) combining 

abiotic, trophic, physiological, behavioural, social, 

demographic and environmental mechanisms, all 

being formalized in the most parsimonious way. The 

expected outcome of this approach is to formalize 

the dependency of each underlying causal chains to 

gain an insight into the overall complex patterns 

observed in the natural environments within which 

agents evolve. The ‘mechanistically rich’ approach 

leads to simulation models producing complex 

patterns that cannot be systematically interpreted but 

that can be studied by modifying the model’s logic 

or parameters. 

Environment is simulated using a discrete grid 

where substrate within each cell can be characterized 

and modified (road, crop, house, hedge …). It is 

superimposed with a continuous space where agents’ 

moves and sensing can be computed precisely. 

Within the use case presented, cells formalize a 

heterogeneous agricultural landscape with fields of 

different kinds such as corn, rape, meadow, alfalfa… 

(Figure 2). Each field characteristic is modified 

through time by simulated agricultural practices 

(sowing, mowing, growing, ploughing…) which 

leads to modify the interest or danger of each cell for 

the simulated rodent agents. Moreover, each year, 

the nature of each field may be modified so as to 

simulate crop rotations that are usual in this type of 

environment. Agents hence are submitted to a 

perpetually changing environment which influences 

their distribution or population size.  

Agents are individual rodents bearing different 

statuses (mature, immature, male, female, pregnant, 

weaning, etc.); they evolve in the domain fulfilling 

several desires such as foraging, reproduction, 

fleeing, suckling... Foraging agents react to their 

environment by selecting and moving to the area for 

which they perceive themselves to have the highest 

affinity. They select a destination (or choose to 

remain where they are) on the basis of their 

physiological state, location, and the perception of 

their surroundings. This is taken into account in the 

model using a ‘perception-deliberation-decision-

action’ scheme (e.g., Ferber, 1999).  

In this study, the decision process of the rodent is 

limited to aiming to a selected destination and 

interacting with its target once arrived. Agent’s 

speed, sensing radius and deliberation processes 

affect its response to its environment (Figure 1). A 

controller schedules the agents’ steps and manages 

the seasonal fluctuation of the landscape. 

 
 Update physiological status 

 If current place is dangerous or overloaded 

  Flee (remove target, select an aim and move at high speed) 
 Else 

  If already gets target (other relative, burrow system, crop) 

   If arrived 

    Process target (eat, suckle, mate, enter burrow…) 

    Update 'cognitive’ status (target, desire) 
   Else 

    If moving target re-compute target’s position 

     Move towards target 

  Else 

   Perceive objects within sensing area 

   Select desire (forage, reproduction, none, spawn, suckle) 

   Elaborate set of alternatives 
(deliberate out of perceived objects given desire) 

   Select target (out of possible alternatives (closest+random) 

   If target found 

    Compute target position 

    Move towards target 

   Else wander (choose random aim and move) 

 Grow older (increment age) 

 Check death (age dependent death probability) 

Figure 1: simplified pseudocode for the processes 

performed by each rodent agent during one time step. 

Bold: sub-models not detailed here; italics: comments 

on the corresponding sub-model; underlined: processes 

involving time-scale dependency. 
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2.2 Use case description 

A theoretical domain is used as a support for 

simulation. The simulated space mimics one real 

situation encountered in the French Poitou-

Charentes region (e.g., 46°16'9.91"N 0°24'26.07"W), 

an area colonized by the rodent species simulated. It 

is a square of 53x53 cells of 7.48 m side 

representing one 15.72 ha area. Various types of 

crops are arbitrarily disposed in the domain as well 

as human habitation, road and a motorway. 

Rodents reproduce from April to October, during 

this period, reproduction prevails on foraging. When 

male mature agents perceive mature females they 

mate; females then produce offspring’s after a 

gestation length (mating latency and weaning are 

also formalized). Burrow systems are the third 

spatial entity considered. They are dug by female 

rodent agents and disappear within a week when 

they are empty. Burrow systems thus exist for 

limited periods of time; they are located in both the 

discrete and continuous space in which the agents 

move. 

A common simulation output is presented on 

Figure 2. Rodents distribute themselves through time 

depending on the reproduction season and the 

evolution of the field statuses. They usually 

preferentially occupy perennial fields of meadow or 

alfalfa as well as roadside verges or field borders as 

described in the literature (e.g., Briner et al., 2005, 

Topping et al., 2010). Population size (Figure 2 

middle) shows a seasonal fluctuation with births 

occurring during the reproduction season. Mortality 

peaks occur when ploughing happens in a crop 

occupied by a colony of rodents. At a yearly scale, 

population may undergo acute decline (e.g., year 7) 

leading to either population collapse or restoring. 

Mean dispersal (Figure 2 bottom) remains steady and 

fits with the observed vital domain of this species 

(Quéré and Le Louarn, 2011), maximum dispersal 

fluctuates at a value near the simulated domain side 

with less dispersal for females which remain more 

sedentary because of their childcare activity. 

2.3 Time scale mechanisms 

involved 

Three major categories of processes are bound to 

the time scale used and vary accordingly to the time 

step chosen for simulation. The first involves the 

duration of each phase of the rodent life cycle 

(weaning, maturity, gestation length, etc.); the 

second concerns agents’ sensing:  

 

 

 

 
Figure 2: standard simulation outputs of the studied 

use case - common vole rodents in a fragmented 

agricultural landscape. Top: snapshot of the population 

distribution within the simulated domain; middle, 

population size and birth/death rates; bottom: evolution of 

mean and maximum dispersal within the period 

(simulation time step: 3hours). 
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Agents have a sensing area encompassing any 

object or agent (substrate nature, relatives, burrow 

systems) perceptible within one time step. It is 

defined as a fixed circle with a parameterized radius 

(e.g., Jia et al., 2018) corresponding to the vital 

range of this type of animal (Quéré and Le Louarn, 

2011). The sensing area moves with the agent and is 

computed precisely from the continuous space 

coordinates. The radius value is declared in m/day 

and is adjusted to the time step (or tick) scale used 

by converting it into m/tick or cell/tick depending on 

the behaviour mechanism involved in rodent’s 

activity. 

The third category of process depending on time 

scale is the common speed of the agent which is also 

expressed in m/day and converted into m/tick. For a 

given time step, the rodent speed is fixed except in 

cases where either its current place has exceeded the 

cell or burrow system carrying capacity or if it 

arrived in a dangerous area (e.g., road, 

motorway…). In such cases the rodent flees from its 

current place at a speed four times its normal speed 

until it reaches a place that is not overloaded. 

2.4  Flexible time-scale 

implementation 

To ensure the integrity of the multiple scales 

units and conversions dealt with and secure model’s 

verification, we have first suffixed most methods or 

properties names with the units that characterize 

them (e.g., meter, day, cell, tick, gramPerDay). 

Time and space conversion is realized using an 

extension of the standard java Gregorian calendar 

which constitutes the time reference within the 

model. This class manages both a time amount and a 

time unit (e.g., 3+hours). We also plugged a 

converter class providing all the necessary utilities to 

operate the needed conversions between time step 

units and universal units managed by the calendar. 

This permits conversion of speeds and sensing 

spheres depending of the time or space units in the 

continuous space and within the grid (e.g., meter per 

day into meter per tick or into grid cells per tick).  

2.5  Simulation conditions and 

sensitivity analysis performed 

The rodent population is initialized with 400 

individuals and 50 burrow systems representing a 

pioneer population density of 25 ind./ha. 

Simulations are run using time steps ranging (i) from 

5 min to 90 min each 5 min, (ii) from 90 min to 48 

hours each 10 min and (iii) from 48 hours to 9 days 

each 30 min. Two constraints are imposed to stop 

simulations. The first correspond to a maximum of 

three years simulation duration, giving a one-year 

cycle to allow the model to escape from initial 

conditions and two supplementary yearly cycles 

with similar cyclic patterns. Simulations are stopped 

at the beginning of the reproduction season where 

rodents’ population is at its lowest. The second stop 

condition is triggered when either a maximum 

population of 6.000 individuals evolving within the 

domain is reached, that is a signature of a pullulating 

population, or when no female remains, hence 

signing a collapsing population. Two indicators are 

selected to study the effect of changing time step, 

the first one is the duration of the simulation; either 

max allowed time or population life before collapse. 

The second is the size of the population at the end of 

the simulation 

3. RESULTS 

Depending on the initial parameter values the 

simulated population may persist a few days to 

several centuries before collapsing. In the current 

model the latter case is rare and the population often 

collapses in the complex environment within which 

it evolves. This is expressed in Figure 3 where the 

time step values tested almost always result in the 

early extinction of the population, except for small 

tick values.  

The range of values used in this sensitivity 

analysis is intentionally larger than the supposed 

realistic range of time step values; this makes it 

possible to highlight the artefactual behaviours 

related to the model function and the simplification 

that it brings. Thus, the right of the graph shows an 

increase in the lifetime of the population as the time 

step increases with a phase transition at a time step 

of 190 hours leading to a plateau. In those extreme 

situations from 20 to 190 hour per time step, the 

increase in the population life span is related to the 

increase in rodent speed and perception that allows 

them to reach their target more and more quickly 

during a single cycle (as of a time step equals to 63 

hours, rodents acquire a complete perception of the 

domain at each tick). Detailed simulations observed 

there indicate a boundary conditions effect that 

becomes preponderant with a significant rodent 

density observed abutting the limits of the domain.
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Figure 3: Selected output indicators of the time step sensitivity analysis. Dots: population size at the end of 

the simulation; dotted line: duration of the simulation. Simulations are stopped when the rodent population 

collapses, when it exceeds 6.000 individuals (proliferation), or when the duration reaches 3 years. 

 

 

The last plateau to the right of the figure starts at 

the time step 190 hours when rodents acquire a 

speed per tick allowing them to traverse the whole 

domain modelled during a single time step. At this 

stage, any target is instantly reached. However, this 

functionality does not allow the population to persist 

and in this value range no population is viable. The 

observed outputs indicate high mortality peaks 

during the winter season. These peaks are attributed 

to the non-optimal positioning of rodents related to 

their excessive displacements. 

For much shorter time steps (Figure 4), 

simulations indicate a range of tick values (in red) 

that enables a sustainable population over the 

medium term (i.e., beyond the period presented 

here). Within this interval, the population remains at 

a sufficient level to resist the hazards of its 

environment. This range of values also reflects the 

adequate frequency of agents’ deliberation/execution 

process. It lies in this case between 25 minutes and 3 

hours with optimal value at about 45 min 

corresponding to an almost steady population (see 

illustration on Figure 2). 

 
Figure 4: Sensitivity analysis outputs for small 

values of the time step: focus on the extreme left 

part of Figure 3; same caption used. 
 

It can be also noticed that within this interval, the 

more the time step increases, the more the dynamics 

of the population deteriorates with a smaller and 

smaller size at the end of the simulation. This 

phenomenon can be attributed to a less efficient 

adaptation of the virtual population to its simulated 

environment. It can be also interpreted as a bias 

related to the method used for computing the 
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rodents’ sensing area according to the time step, 

which will be discussed in the next section. 

For very small tick values (5 to 20 min), the 

observed phenomenon is a rodent outbreak. Detailed 

observation of each of these simulations (not 

figured) suggests that, using these small tick values, 

rodents’ moves remain very limited from one time 

step to another. The burrow systems then constitute 

foci where rodents maintain themselves in dense 

groups that reproduce intensely. In addition, when 

burrows are established in stable areas, resident 

populations may be less subject to the hazards of the 

environment than when they move further. 

4. DISCUSSION 

Performing a sensitivity analysis of the model on 

a wide range of time scales provided two types of 

insights. On the one hand it permitted to get better 

understanding of the model function and limitations. 

On the other hand it provided a mean to infer a 

reasonable range of validity from the logic of the 

modelled processes, such as here the frequency of 

decision/action processes performed by rodents over 

a period of time and leading to a perennial 

population in a given environment. The valid range 

of frequency here suggests that rodents in the wild 

would perform a deliberation process from each 3 

min to each 3 hours. To our knowledge, this value is 

not accessible to experimentation or sampling. 

However, it could constitute a clue to estimate the 

order of magnitude of the cognitive activity that 

these small animals realize in their environment. 

Nevertheless, these results have to be considered 

with caution and as only indicative since they come 

from a single parameter sensitivity analysis, that is, 

all other things being equal otherwise. It is almost 

certain that the model is also sensitive to numerous 

other aspects such as the spatial resolution or the 

initial conditions imposed. Changing values for 

these parameters would be susceptible to modify the 

resulting optimal time scale that rose out of the 

analysis. Multi-criteria sensitivity analysis (e.g., 

Saltelli et al., 2004) would therefore be necessary to 

get more confident insight into the model’s 

potential. 

Simulations indicated large variation of the 

selected indicator outputs; the population life time 

and size. In an ideal scheme, the expected outcome 

of such analysis would be that the simulated 

population dynamics and indicator values would 

remain unchanged whatever the time scale chosen. 

Some contexts permits to reach such objective. 

These occur when relationships between time 

dependent parameters and time scale are linear. This 

was here the case for life traits parameters such as 

gestation, weaning duration, ageing.... Changing 

time scale did not change the rodent agents’ life 

cycle whatever the time step chosen. Kuo et al. 

(2012) developed an epidemiological stochastic 

agent-based model where probabilities could be 

adjusted relative to time scale. In this case also, their 

study led to almost reproducible results whatever the 

time scale chosen. When however relationships 

between time step and time-dependent parameters 

are not linear, discrepancies appear and increasing 

biases occur with increasing changes in time steps.  

This is particularly the case here for time scaling 

of agents’ perception area. Little literature was 

found on formalization of agents' perception area. 

Jia et al. (2018) used sensing circle radius as the 

parameter defining the perception area of an agent. 

This parameter was also used in this study to define 

the agents’ sensing area and perform the conversion 

from one time scale to the other. In a fixed time step 

context, this approach is indeed the more logical and 

straightforward. However, in a multi-time-scale 

context, where sensing area must be scaled as a 

function of time, it is not clear if this approach 

comes out as a satisfactory solution. Geometry 

calculations made before this study indicate that, in 

the case of a straight line movement, the cumulated 

area perceived by a rodent during several small time 

steps is greater than that of a circle corresponding to 

the area perceived on a larger time step equivalent to 

the sum of the previous ones. At the same time, if 

one considers that the rodent does not usually move 

in a straight line but in an erratic or semi-erratic 

trajectory such as in Lévy flight’s (Chechkin et al., 

2008), as it is the case during foraging, this travelled 

area then decreases and converges toward the same 

order of magnitude than the integrated circle.  

In any case therefore, the area actually perceived 

depends on the detail of the agent’s trajectory. It is 

indeed logical that the perception area computed at 

any timescale depends on the simulated trajectories 

of rodents. Since these trajectories are moreover 

themselves dependent on time and objects, changing 

time scale produces biases in the model outcome 

that may be difficult to reduce.  

5. CONCLUSION 

Exploitation of the model output at different time 

scales proved valuable to better understand the 
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model potential, limitation and functioning. This 

approach also provided a better insight on the 

plausible range of activity of rodents in the wild 

such as the frequency at which they should react to 

their environment by mean of the 

perception/deliberation scheme, within the limitation 

of such simplified model.  

This work also raises question on the best way to 

formalize sensing. In this domain, comparative study 

of different means to formalize time-dependent 

perception, for example by using a surface, a radius, 

or making agents’ sensing area a time-independent 

parameter, would help improving modelling of 

ecosystem-dependent agents. 
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